Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279271

RESUMO

Albinism is characterized by a variable degree of hypopigmentation affecting the skin and the hair, and causing ophthalmologic abnormalities. Its oculocutaneous, ocular and syndromic forms follow an autosomal or X-linked recessive mode of inheritance, and 22 disease-causing genes are implicated in their development. Our aim was to clarify the genetic background of a Hungarian albinism cohort. Using a 22-gene albinism panel, the genetic background of 11 of the 17 Hungarian patients was elucidated. In patients with unidentified genetic backgrounds (n = 6), whole exome sequencing was performed. Our investigations revealed a novel, previously unreported rare variant (N687S) of the two-pore channel two gene (TPCN2). The N687S variant of the encoded TPC2 protein is carried by a 15-year-old Hungarian male albinism patient and his clinically unaffected mother. Our segregational analysis and in vitro functional experiments suggest that the detected novel rare TPCN2 variant alone is not a disease-causing variant in albinism. Deep genetic analyses of the family revealed that the patient also carries a phenotype-modifying R305W variant of the OCA2 protein, and he is the only family member harboring this genotype. Our results raise the possibility that this digenic combination might contribute to the observed differences between the patient and the mother, and found the genetic background of the disease in his case.


Assuntos
Albinismo , Proteínas de Membrana Transportadoras , Humanos , Masculino , Adolescente , Hungria , Mutação , Proteínas de Membrana Transportadoras/metabolismo , Albinismo/genética , Patrimônio Genético
2.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108562

RESUMO

Hearing loss is the most prevalent sensory disorder worldwide. The majority of congenital nonsyndromic hearing loss (NSHL) cases are caused by hereditary factors. Previously, the majority of NSHL studies focused on the GJB2 gene; however, with the availability of next-generation sequencing (NGS) methods, the number of novel variants associated with NSHL has increased. The purpose of this study was to design effective genetic screening for a Hungarian population based on a pilot study with 139 NSHL patients. A stepwise, comprehensive genetic approach was developed, including bidirectional capillary sequencing, multiplex ligation-dependent probe amplification (MLPA), and an NGS panel of 108 hearing loss genes. With our results, a genetic diagnosis was possible for 92 patients. Sanger sequencing and MLPA identified the genetic background of 50% of these diagnosed cases, and the NGS panel identified another 16%. The vast majority (92%) of the diagnosed cases showed autosomal recessive inheritance and 76% were attributed to GJB2. The implementation of this stepwise analysis markedly increased our diagnostic yield and proved to be cost-effective as well.


Assuntos
Perda Auditiva , Humanos , Hungria , Projetos Piloto , Mutação , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Conexina 26/genética , Conexinas/genética
3.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499499

RESUMO

Huntington's Disease (HD) is a fatal neurodegenerative disorder caused by the expansion of a polyglutamine-coding CAG repeat in the Huntingtin gene. One of the main causes of neurodegeneration in HD is transcriptional dysregulation that, in part, is caused by the inhibition of histone acetyltransferase (HAT) enzymes. HD pathology can be alleviated by increasing the activity of specific HATs or by inhibiting histone deacetylase (HDAC) enzymes. To determine which histone's post-translational modifications (PTMs) might play crucial roles in HD pathology, we investigated the phenotype-modifying effects of PTM mimetic mutations of variant histone H3.3 in a Drosophila model of HD. Specifically, we studied the mutations (K→Q: acetylated; K→R: non-modified; and K→M: methylated) of lysine residues K9, K14, and K27 of transgenic H3.3. In the case of H3.3K14Q modification, we observed the amelioration of all tested phenotypes (viability, longevity, neurodegeneration, motor activity, and circadian rhythm defects), while H3.3K14R had the opposite effect. H3.3K14Q expression prevented the negative effects of reduced Gcn5 (a HAT acting on H3K14) on HD pathology, while it only partially hindered the positive effects of heterozygous Sirt1 (an HDAC acting on H3K14). Thus, we conclude that the Gcn5-dependent acetylation of H3.3K14 might be an important epigenetic contributor to HD pathology.


Assuntos
Histonas , Doença de Huntington , Animais , Histonas/metabolismo , Lisina/metabolismo , Acetilação , Processamento de Proteína Pós-Traducional , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Doença de Huntington/metabolismo , Drosophila/metabolismo
4.
Sci Rep ; 9(1): 17973, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784689

RESUMO

Post-translational modifications of histone proteins play a pivotal role in DNA packaging and regulation of genome functions. Histone acetyltransferase 1 (Hat1) proteins are conserved enzymes that modify histones by acetylating lysine residues. Hat1 is implicated in chromatin assembly and DNA repair but its role in cell functions is not clearly elucidated. We report the generation and characterization of a Hat1 loss-of-function mutant in Drosophila. Hat1 mutants are viable and fertile with a mild sub-lethal phenotype showing that Hat1 is not essential in fruit flies. Lack of Hat1 results in the near complete loss of histone H4 lysine (K) 5 and K12 acetylation in embryos, indicating that Hat1 is the main acetyltransferase specific for these marks in this developmental stage. We found that Hat1 function and the presence of these acetyl marks are not required for the nuclear transport of histone H4 as histone variant His4r retained its nuclear localization both in Hat1 mutants and in His4r-K5R-K12R double point mutants. RNA-seq analysis of embryos indicate that in Hat1 mutants over 2000 genes are dysregulated and the observed transcriptional changes imply a delay in the developmental program of gene expression.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Acetilação , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Histona Acetiltransferases/genética , Histonas/genética , Processamento de Proteína Pós-Traducional , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA