Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Inhal Toxicol ; 27(11): 576-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26514785

RESUMO

CONTEXT: Biodiesel and biodiesel-blend fuels offer a renewable alternative to petroleum diesel, but few data are available concerning the carcinogenic potential of biodiesel exhausts. OBJECTIVES: We compared the formation of covalent DNA adducts by the in vitro metabolic activation of organic extracts of diesel-exhaust particles (DEP) from petroleum diesel and soy biodiesel and correlated DNA adduct levels and mutagenicity in Salmonella TA100. METHODS: We examined two different DEP from petroleum diesel (C-DEP and B0), one from soy bean oil biodiesel (B100) and one from combustion of a blend of 20% B100 and 80% B0 (B20) for in vitro DNA adduct-forming potential under oxidative or nitroreductive conditions in the presence of calf thymus DNA as well as in vivo in Salmonella TA100. The modified DNA was hydrolyzed and analyzed by (32)P-postlabeling using either butanol extraction or nuclease P1 pre-enrichment. RESULTS: Multiple DNA adducts were produced with chromatographic mobilities consistent with PAH and nitro-PAH adducts. The types and quantities of DNA adducts produced by the two independent petroleum diesel DEP were similar, with both polycyclic aromatic hydrocarbon (PAH)- and nitro-PAH-derived adducts formed. Relative potencies for S9-mediated DNA adduct formation, either per mass of particulate or per MJ(th) energy consumed were B100 > B0 > B20. CONCLUSIONS: Soy biodiesel emissions induced DNA damage in the form of presumptive PAH and nitro-PAH DNA adducts that correlated with mutagenicity in Salmonella. B20 is the soy biodiesel used most commonly in the US, and it produced the lowest DNA adduct-emission factor, ∼50% that of petroleum diesel.


Assuntos
Biocombustíveis/toxicidade , Adutos de DNA/biossíntese , Material Particulado/toxicidade , Salmonella/efeitos dos fármacos , Salmonella/metabolismo , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Relação Dose-Resposta a Droga
2.
Mater Express ; 14(2): 249-263, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-39026927

RESUMO

Multi-walled Carbon nanotubes (MWCNTs) lack sufficient quality cytotoxicity, toxicity, genotoxicity and genomic data on which to make environmental and regulatory decisions. Therefore, we did a multidisciplinary in vitro study of 3 MWCNTs in human lung cells (BEAS-2B) with the following endpoints: cytotoxicity, DNA damage, reactive oxygen and nitrogen species, lipid peroxidation and mRNA and microRNA expression analyses. The MWCNTs were either unfunctionalized or functionalized with either -OH or -COOH. Doses studied ranged from 0.3 to 100 ug/ml and were exposed to a human lung cell line in vitro for 72 h., with genomic studies being done from 30 ug/ml downward. Some of the genomic pathways that were altered by MWCNT exposure were NRF2 mediated oxidative stress response, DNA damage repair, nuclear excision repair, base excision repair, mitochondrial dysfunction, oxidative phosphorylation, HIF1α signaling, unfolded protein response, protein ubiquitination, ferroptosis and sirtuin signaling pathways. The data suggested that OH functionalized MWCNT caused more and larger gene/microRNA changes, followed by COOH functionalized MWCNT and unfunctionalized MWCNT being the least biologically active. From microRNA target filter analysis, there were altered signaling hubs. MYC is the only hub that altered by all 3 MWCNTs. Signaling hubs that are common to OH and COOH functionalized MWCNTs are GRB2, AR, TP63 and AGO2. The signaling hubs that were only present in OH functionalized MWCNTs are TP53, STAT3 and BRCA1. These signaling pathways and hubs we found in vitro correlated well with the published in vivo pathological effects like oxidative stress DNA damage, inflammation and cancer in MWCNTs treated mice.

3.
Mutagenesis ; 27(5): 541-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22492202

RESUMO

The mouse liver tumorigenic conazole fungicides triadimefon and propiconazole have previously been shown to be in vivo mouse liver mutagens in the Big Blue™ transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazole myclobutanil was not mutagenic. DNA sequencing of the mutants recovered from each treatment group as well as from animals receiving control diet revealed that propiconazole- and triadimefon-induced mutations do not represent general clonal expansion of background mutations, and support the hypothesis that they arise from the accumulation of endogenous reactive metabolic intermediates within the liver in vivo. We therefore measured the spectra of endogenous DNA adducts in the livers of mice from these studies to determine if there were quantitative or qualitative differences between mice receiving tumorigenic or nontumorigenic conazoles compared to concurrent control animals. We resolved and quantitated 16 individual adduct spots by (32)P postlabelling and thin layer chromatography using three solvent systems. Qualitatively, we observed the same DNA adducts in control mice as in mice receiving conazoles. However, the 13 adducts with the highest chromatographic mobility were, as a group, present at significantly higher amounts in the livers of mice treated with propiconazole and triadimefon than in their concurrent controls, whereas this same group of DNA adducts in the myclobutanil-treated mice was not different from controls. This same group of endogenous adducts were significantly correlated with mutant frequency across all treatment groups (P = 0.002), as were total endogenous DNA adduct levels (P = 0.005). We hypothesise that this treatment-related increase in endogenous DNA adducts, together with concomitant increases in cell proliferation previously reported to be induced by conazoles, explain the observed increased in vivo mutation frequencies previously reported to be induced by treatment with propiconazole and triadimefon.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Adutos de DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Triazóis/toxicidade , Animais , Fígado/efeitos dos fármacos , Masculino , Camundongos , Mutagênicos/administração & dosagem , Mutagênicos/farmacologia , Mutação/efeitos dos fármacos , Triazóis/administração & dosagem , Triazóis/farmacologia
4.
J Nanosci Nanotechnol ; 19(11): 6907-6923, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039842

RESUMO

Nano-TiO2 and nano-CeO2 are among the most widely used engineered nanoparticles (NPs). We investigated a variety of endpoints to assess the toxicity of eight of these NPs to induce potentially adverse health effects in an In Vitro human respiratory epithelial cell model. These endpoints include cytotoxicity, reactive oxygen species (ROS)/reactive nitrogen species (RNS) production, 8-hydroxy-2_-deoxyguanosine (8-oxo-dG), endogenous DNA adducts, Apurinic/apyrimidinic (AP) sites, 4-Hrdoxynonenal (4-HNE) protein adducts, Malondialdehyde (MDA) protein adducts, and genomics analysis on altered signaling pathways. Our results indicated that cytotoxicity assays are relatively insensitive, and we detected changes in other endpoints at concentrations much lower than those inducing cytotoxicity. Among the ROS-related endpoints, 8-oxo-dG is relatively more sensitive than other assays, and nano-TiO2 induced more 8-oxo-dG formation than nano-CeO2. Finally, there are many signaling pathways changes at concentrations at which no cytotoxicity was observed. These alterations in signaling pathways correlated well with In Vitro toxicity that was observed at higher concentrations, and with in vivo adverse outcome pathways caused by nano-TiO2 and nano-CeO2 in experimental animals.


Assuntos
Células Epiteliais , Titânio , Animais , Humanos , Pulmão , Espécies Reativas de Oxigênio , Titânio/toxicidade
5.
Biochem Pharmacol ; 72(1): 115-23, 2006 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-16678797

RESUMO

GST isoforms have been extensively studied in adult tissues but little is known about the composition and levels of these enzymes in fetal tissues. As part of our ongoing studies to determine the potential role of metabolic enzymes in mediating the differential susceptibility of different strains of mice to lung tumorigenesis following in utero exposure to 3-methylcholanthrene (MC), we screened for GST enzyme activity and for expression of the individual GSTalpha, pi, mu, and theta isoforms in murine fetal lung and liver tissues isolated from the parental strains and F1 crosses between C57BL/6 (B6) and BALB/c (C) mice. Using 1-chloro-2,4-dinitrobenzene (CDNB) as a substrate, we found that treatment with MC had no effect on the levels of GST enzyme activity in either the fetal lung or liver in either of the two parental strains or their F1 crosses. Low levels of expression of each of the four enzymes were detected by Western blotting in both fetal lung and liver tissues in all four strains. A statistically significant 3.5-fold induction was observed only for GSTmu in the fetal lung of the parental strain of BALB/c mice 48 h after exposure to MC. None of the other enzymes showed any significant differences in the levels of expression following exposure to MC. Although strain-specific differences in the expression of the GSTs that were independent of MC treatment were observed, they could not account for the differences previously observed in either the Ki-ras mutational spectrum or lung tumor incidence in the different strains of mice. Similar results were obtained when the maternal metabolism of MC was assayed in liver microsomal preparations. The results are consistent with previous studies showing low levels and poor inducibility of phase II enzymes during gestation, and demonstrate for the first time that all four of the major GST enzymes are expressed in fetal tissues. While the high inducibility of activating enzymes, such as Cyp1a1, and low, uninducible levels of phase II conjugating enzymes probably account for the high susceptibility of the fetus to transplacentally induced tumor formation, the results also suggest that factors other than metabolism may account for the strain-specific differences in susceptibility to carcinogen-mediated lung tumor induction following in utero exposure to chemical carcinogens.


Assuntos
Carcinógenos/toxicidade , Glutationa Transferase/metabolismo , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Metilcolantreno/toxicidade , Animais , Carcinógenos/farmacocinética , Cruzamentos Genéticos , Feminino , Glutationa Transferase/classificação , Glutationa Transferase/genética , Isoenzimas , Fígado/embriologia , Fígado/enzimologia , Pulmão/embriologia , Pulmão/enzimologia , Masculino , Exposição Materna , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Gravidez , Especificidade da Espécie
6.
Mutat Res ; 521(1-2): 91-102, 2002 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-12438007

RESUMO

Benzo[a]pyrene (B[a]P) is the most thoroughly studied polycyclic aromatic hydrocarbon (PAH). Many mechanisms have been suggested to explain its carcinogenic activity, yet many questions still remain. K-region dihydrodiols of PAHs are metabolic intermediates depending on the specific cytochrome P450 and had been thought to be detoxification products. However, K-region dihydrodiols of several PAHs have recently been shown to morphologically transform mouse embryo C3H10T1/2CL8 cells (C3H10T1/2 cells). Because K-region dihydrodiols are not metabolically formed from PAHs by C3H10T1/2 cells, these cells provide a useful tool to independently study the mechanisms of action of PAHs and their K-region dihydrodiols. Here, we compare the morphological cell transforming, DNA damaging, and DNA adducting activities of the K-region dihydrodiol of B[a]P, trans-B[a]P-4,5-diol with B[a]P. Both trans-B[a]P-4,5-diol and B[a]P morphologically transformed C3H10T1/2 cells by producing both Types II and III transformed foci. The morphological cell transforming and cytotoxicity dose response curves for trans-B[a]P-4,5-diol and B[a]P were indistinguishable. Since morphological cell transformation is strongly associated with mutation and/or larger scale DNA damage in C3H10T1/2 cells, the identification of DNA damage induced in these cells by trans-B[a]P-4,5-diol was sought. Both trans-B[a]P-4,5-diol and B[a]P exhibited significant DNA damaging activity without significant concurrent cytotoxicity using the comet assay, but with different dose responses and comet tail distributions. DNA adduct patterns from C3H10T1/2 cells were examined after trans-B[a]P-4,5-diol or B[a]P treatment using 32P-postlabeling techniques and improved TLC elution systems designed to separate polar DNA adducts. While B[a]P treatment produced one major DNA adduct identified as anti-trans-B[a]P-7,8-diol-9,10-epoxide-deoxyguanosine, no stable covalent DNA adducts were detected in the DNA of trans-B[a]P-4,5-diol-treated cells. In summary, this study provides evidence for the DNA damaging and morphological cell transforming activities of the K-region dihydrodiol of B[a]P, in the absence of covalent stable DNA adducts. While trans-B[a]P-4,5-diol and B[a]P both induce morphological cell transformation, their activities as DNA damaging agents differ, both qualitatively and quantitatively. In concert with the morphological cell transformation activities of other K-region dihydrodiols of PAHs, these data suggest a new mechanism/pathway for the morphological cell transforming activities of B[a]P and its metabolites.


Assuntos
Benzo(a)pireno/toxicidade , Transformação Celular Neoplásica/efeitos dos fármacos , Adutos de DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Di-Hidroxi-Di-Hidrobenzopirenos/química , Di-Hidroxi-Di-Hidrobenzopirenos/toxicidade , Animais , Benzo(a)pireno/química , Células Cultivadas , Ensaio Cometa , Adutos de DNA/química , Dano ao DNA/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Marcação por Isótopo , Mamíferos , Camundongos , Testes de Mutagenicidade/métodos , Radioisótopos de Fósforo
7.
Anal Biochem ; 355(2): 213-23, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16797471

RESUMO

Benzo[a]pyrene-7,8-quinone (BPQ) is one of the reactive metabolites of the widely distributed archetypal polycyclic aromatic hydrocarbon, benzo[a]pyrene (B[a]P). The formation of BPQ from B[a]P through trans-7,8-dihydroxy-7,8-dihydroB[a]P by the mediation of aldo-keto reductases and its role in the genotoxicity and carcinogenesis of B[a]P currently are under extensive investigation. Toxicity pathways related to BPQ are believed to include both stable and unstable (depurinating) DNA adduct formation as well as reactive oxygen species. We previously reported the complete characterization of four novel stable BPQ-deoxyguanosine (dG) and two BPQ-deoxyadenosine (dA) adducts (Balu et al., Chem. Res. Toxicol. 17 (2004) 827-838). However, the identification of BPQ-DNA adducts by 32P postlabeling methods from in vitro and in vivo exposures required 3'-monophosphate derivatives of BPQ-dG, BPQ-dA, and BPQ-deoxycytidine (dC) as standards. Therefore, in the current study, BPQ adducts of dGMP(3'), dAMP(3'), and dCMP(3') were prepared. The syntheses of the BPQ-3'-mononucleotide standards were carried out in a manner similar to that reported previously for the nucleoside analogs. Reaction products were characterized by UV, LC/MS analyses, and one- and two-dimensional NMR techniques. The spectral studies indicated that all adducts existed as diastereomeric mixtures. Furthermore, the structural identities of the novel BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adducts were confirmed by acid phosphatase dephosphorylation of the BPQ-nucleotide adducts to the corresponding known BPQ-nucleoside adduct standards. The BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adduct standards were used in 32P postlabeling studies to identify BPQ adducts formed in vitro with calf thymus DNA and DNA homopolymers. 32P postlabeling analysis revealed the formation of 8 major and at least 10 minor calf thymus DNA adducts. Of these BPQ-DNA adducts, the following were identified: 1 BPQ-dGMP adduct, 2 BPQ-dAMP adducts, and 3 BPQ-dCMP adducts. This study represents the first reported example of the characterization of stable BPQ-DNA adducts in isolated mammalian DNA and is expected to contribute significantly to the future BPQ-DNA adduct studies in vivo and thereby to the contribution of BPQ in B[a]P carcinogenesis.


Assuntos
Benzo(a)pireno/análise , Benzopirenos/análise , Adutos de DNA/análise , DNA/química , Radioisótopos de Fósforo/química , Quinonas/análise , Oxirredutases do Álcool/metabolismo , Benzo(a)pireno/análogos & derivados , Benzo(a)pireno/química , Benzo(a)pireno/metabolismo , Benzopirenos/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Cromatografia Líquida de Alta Pressão , DNA/metabolismo , Adutos de DNA/química , Adutos de DNA/metabolismo , Nucleotídeos de Desoxiadenina/análise , Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxicitosina/análise , Nucleotídeos de Desoxicitosina/química , Nucleotídeos de Desoxiguanina/análise , Nucleotídeos de Desoxiguanina/química , Espectroscopia de Ressonância Magnética , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Quinonas/química , Quinonas/metabolismo , Espécies Reativas de Oxigênio/química , Padrões de Referência
8.
Toxicol Appl Pharmacol ; 209(1): 28-38, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15885734

RESUMO

Fetal mice are more sensitive to chemical carcinogens than are adults. Previous studies from our laboratory demonstrated differences in the mutational spectrum induced in the Ki-ras gene from lung tumors isolated from [D2 x B6D2F1]F2 mice and Balb/c mice treated in utero with 3-methylcholanthrene (MC). We thus determined if differences in metabolism, adduct formation, or adduct repair influence strain-specific responses to transplacental MC exposure in C57BL/6 (B6), Balb/c (BC), and reciprocal F1 crosses between these two strains of mice. The induction of Cyp1a1 and Cyp1b1 in fetal lung and liver tissue was determined by quantitative fluorescent real-time PCR. MC treatment caused maximal induction of Cyp1a1 and Cyp1b1 RNA 2-8 h after injection in both organs. RNA levels for both genes then declined in both fetal organs, but a small biphasic, secondary increase in Cyp1a1 was observed specifically in the fetal lung 24-48 h after MC exposure in all four strains. Cyp1a1 induction by MC at 4 h was 2-5 times greater in fetal liver (7000- to 16,000-fold) than fetal lung (2000- to 6000-fold). Cyp1b1 induction in both fetal lung and liver was similar and much lower than that observed for Cyp1a1, with induction ratios of 8- to 18-fold in fetal lung and 10- to 20-fold in fetal liver. The overall kinetics and patterns of induction were thus very similar across the four strains of mice. The only significant strain-specific effect appeared to be the relatively poor induction of Cyp1b1 in the parental strain of B6 mice, especially in fetal lung tissue. We also measured the levels of MC adducts and their disappearance from lung tissue by the P(32) post-labeling assay on gestation days 18 and 19 and postnatal days 1, 4, 11, and 18. Few differences were seen between the different strains of mice; the parental strain of B6 mice had nominally higher levels of DNA adducts 2 (gestation day 19) and 4 (postnatal day 1) days after injection, although this was not statistically significant. These results indicate that differences in Phase I metabolism of MC and formation of MC-DNA adducts are unlikely to account for the marked differences observed in the Ki-ras mutational spectrum seen in previous studies. Further, the results suggest that other genetic factors may interact with chemical carcinogens in determining individual susceptibility to these agents during development.


Assuntos
Hidrocarboneto de Aril Hidroxilases/biossíntese , Citocromo P-450 CYP1A1/biossíntese , Adutos de DNA/metabolismo , Metilcolantreno/toxicidade , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1 , Análise Mutacional de DNA , DNA Complementar/biossíntese , Indução Enzimática/efeitos dos fármacos , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genes ras/genética , Fígado/efeitos dos fármacos , Fígado/embriologia , Fígado/enzimologia , Pulmão/efeitos dos fármacos , Pulmão/embriologia , Pulmão/enzimologia , Metilcolantreno/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Gravidez , RNA/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA