Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 132(5): 1571-1585, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30756127

RESUMO

KEY MESSAGE: Linkage maps of muscadine grape generated using genotyping-by-sequencing (GBS) provide insight into genome collinearity between Muscadinia and Euvitis subgenera and genetic control of flower sex and berry color. The muscadine grape, Vitis rotundifolia, is a specialty crop native to the southeastern USA. Muscadine vines can be male, female, or perfect-flowered, and berry color ranges from bronze to black. Genetic linkage maps were constructed using genotyping-by-sequencing in two F1 populations segregating for flower sex and berry color. The linkage maps consisted of 1244 and 2069 markers assigned to 20 linkage groups (LG) for the 'Black Beauty' × 'Nesbitt' and 'Supreme' × 'Nesbitt' populations, respectively. Data from both populations were used to generate a consensus map with 2346 markers across 20 LGs. A high degree of collinearity was observed between the genetic maps and the Vitis vinifera physical map. The higher chromosome number in muscadine (2n = 40) compared to V. vinifera (2n = 38) was accounted for by the behavior of V. vinifera chromosome 7 as two independently segregating LGs in muscadine. The muscadine sex locus mapped to an interval that aligned to 4.64-5.09 Mb on V. vinifera chromosome 2, a region which includes the previously described V. vinifera subsp. sylvestris sex locus. While the MYB transcription factor genes controlling fruit color in V. vinifera are located on chromosome 2, the muscadine berry color locus mapped to an interval aligning to 11.09-11.88 Mb on V. vinifera chromosome 4, suggesting that a mutation in a different gene in the anthocyanin biosynthesis pathway determines berry color in muscadine. These linkage maps lay the groundwork for marker-assisted breeding in muscadine and provide insight into the evolution of Vitis species.


Assuntos
Desenvolvimento Vegetal/genética , Vitis/genética , Mapeamento Cromossômico , Cor , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Genoma de Planta , Genótipo , Vitis/crescimento & desenvolvimento
2.
Front Plant Sci ; 14: 1182790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351206

RESUMO

Introduction: Blackberry (Rubus subgenus Rubus) is a soft-fruited specialty crop that often suffers economic losses due to degradation in the shipping process. During transportation, fresh-market blackberries commonly leak, decay, deform, or become discolored through a disorder known as red drupelet reversion (RDR). Over the past 50 years, breeding programs have achieved better fruit firmness and postharvest quality through traditional selection methods, but the underlying genetic variation is poorly understood. Methods: We conducted a genome-wide association of fruit firmness and RDR measured in 300 tetraploid fresh-market blackberry genotypes from 2019-2021 with 65,995 SNPs concentrated in genic regions of the R. argutus reference genome. Results: Fruit firmness and RDR had entry-mean broad sense heritabilities of 68% and 34%, respectively. Three variants on homologs of polygalacturonase (PG), pectin methylesterase (PME), and glucan endo-1,3-ß-glucosidase explained 27% of variance in fruit firmness and were located on chromosomes Ra06, Ra01, and Ra02, respectively. Another PG homolog variant on chromosome Ra02 explained 8% of variance in RDR, but it was in strong linkage disequilibrium with 212 other RDR-associated SNPs across a 23 Mb region. A large cluster of six PME and PME inhibitor homologs was located near the fruit firmness quantitative trait locus (QTL) identified on Ra01. RDR and fruit firmness shared a significant negative correlation (r = -0.28) and overlapping QTL regions on Ra02 in this study. Discussion: Our work demonstrates the complex nature of postharvest quality traits in blackberry, which are likely controlled by many small-effect QTLs. This study is the first large-scale effort to map the genetic control of quantitative traits in blackberry and provides a strong framework for future GWAS. Phenotypic and genotypic datasets may be used to train genomic selection models that target the improvement of postharvest quality.

3.
G3 (Bethesda) ; 12(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35302606

RESUMO

Muscadine grapes (Vitis rotundifolia Michx.) are a specialty crop cultivated in the southern United States. Muscadines (2n = 40) belong to the Muscadinia subgenus of Vitis, while other cultivated grape species belong to the subgenus Euvitis (2n = 38). The muscadine berry color locus was mapped to a 0.8 Mbp region syntenic with chromosome 4 of Vitis vinifera. In this study, we identified glutathione S-transferase4 as a likely candidate gene for anthocyanin transport within the berry color locus. PCR and Kompetitive allele-specific PCR genotyping identified a single intragenic SNP (C/T) marker corresponding to a proline to leucine mutation within the muscadine glutathione S-transferase4 (VrGST4) that differentiated black (CC and CT) from bronze (TT) muscadines in 126 breeding selections, 76 cultivars, and 359 progeny from 3 mapping populations. Anthocyanin profiling on a subset of the progeny indicated a dominant VrGST4 action. VrGST4 was expressed in skins of both black and bronze muscadines at similar levels. While nonsynonymous polymorphisms between black and bronze muscadines were discovered in VrGSTF12, another Type I GST-coding gene in the muscadine color locus, this gene was ruled out as a possible candidate for berry color because RNA sequencing indicated it is not expressed in berry skins at véraison from black or bronze genotypes. These results suggest that the bronze phenotype in muscadines is regulated by a mechanism distinct from the MybA gene cluster responsible for berry color variation in Vitis vinifera.


Assuntos
Vitis , Antocianinas/genética , Antioxidantes , Frutas/genética , Glutationa , Glutationa Transferase/genética , Melhoramento Vegetal , Vitis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA