Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 14(3): 460-469, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29214250

RESUMO

A novel structure was observed below the smectic-A-smectic-C phase transition in a very thin open cell having an air interface above and enforced planar anchoring at the substrate below. The structure appears as periodic dark and light streaks running perpendicular to the oily streaks, which are present in the smectic-A phase [D. Coursault et al., Soft Matter, 2016, 12, 678]. These new streaks, which we call "soapy streaks", form by extending from one oily streak to the next in discrete steps, eliminating optical evidence at visible wavelengths of the oily streaks. At lower temperatures the streaks can undulate and exhibit a sawtooth-like structure; such a structure is chiral in two dimensions. A possible scenario for the origin of these streaks is presented.

2.
J Chem Phys ; 140(10): 104908, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24628206

RESUMO

It has been widely recognized that the combination of carbon nanotube (CNT) and liquid crystals (LCs) not only provides a useful way to align CNTs, but also dramatically enhances the order in the LC phases, which is especially useful in liquid crystal display (LCD) technology. As the measure of this phase behavior, the complex specific heat is presented over a wide temperature range for a negative dielectric anisotropy alkoxyphenylbenzoate liquid crystal (9OO4) and CNT composites as a function of CNT concentration. The calorimetric scans were performed under near-equilibrium conditions between 25 and 95 °C, first cooling and then followed by heating for CNT weight percent ranging from ϕ(w) = 0 to 0.2. All 9OO4/CNT mesophases have transition temperatures ~1 K higher and a crystallization temperature 4 K higher than that of the pure 9OO4. The crystal phase superheats until a strongly first-order specific heat feature is observed, 0.5 K higher than in the pure 9OO4. The transition enthalpy for the nanocomposite mesophases is 10% lower than that observed in the pure 9OO4. The strongly first-order crystallization and melting transition enthalpies are essentially constant over this range of ϕ(w). Complementary electroclinic measurement on a 0.05 wt. % sample, cooling towards the smectic-C phase from the smectic-A, indicates that the SmA-SmC transition remains mean-field-like in the presence of the CNTs. Given the homogeneous and random distribution of CNTs in these nanocomposites, we interpret these results as arising from the LC-CNT surface interaction pinning the orientational order uniformly along the CNT, without pinning the position of the 9OO4 molecule, leading to a net ordering effect for all phases. These effects of incorporating CNTs into LCs are likely due to "anisotropic orientational" coupling between CNT and LC, the change in the elastic properties of composites and thermal anisotropic properties of the CNTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA