Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genome Res ; 34(6): 952-966, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38986579

RESUMO

DEAD box (DDX) RNA helicases are a large family of ATPases, many of which have unknown functions. There is emerging evidence that besides their role in RNA biology, DDX proteins may stimulate protein kinases. To investigate if protein kinase-DDX interaction is a more widespread phenomenon, we conducted three orthogonal large-scale screens, including proteomics analysis with 32 RNA helicases, protein array profiling, and kinome-wide in vitro kinase assays. We retrieved Ser/Thr protein kinases as prominent interactors of RNA helicases and report hundreds of binary interactions. We identified members of ten protein kinase families, which bind to, and are stimulated by, DDX proteins, including CDK, CK1, CK2, DYRK, MARK, NEK, PRKC, SRPK, STE7/MAP2K, and STE20/PAK family members. We identified MARK1 in all screens and validated that DDX proteins accelerate the MARK1 catalytic rate. These findings indicate pervasive interactions between protein kinases and DEAD box RNA helicases, and provide a rich resource to explore their regulatory relationships.


Assuntos
RNA Helicases DEAD-box , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Ligação Proteica , Proteômica/métodos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
2.
Bioinformatics ; 40(4)2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38498849

RESUMO

MOTIVATION: Cross-linking mass spectrometry has made remarkable advancements in the high-throughput characterization of protein structures and interactions. The resulting pairs of cross-linked peptides typically require geometric assessment and validation, given the availability of their corresponding structures. RESULTS: CLAUDIO (Cross-linking Analysis Using Distances and Overlaps) is an open-source software tool designed for the automated analysis and validation of different varieties of large-scale cross-linking experiments. Many of the otherwise manual processes for structural validation (i.e. structure retrieval and mapping) are performed fully automatically to simplify and accelerate the data interpretation process. In addition, CLAUDIO has the ability to remap intra-protein links as inter-protein links and discover evidence for homo-multimers. AVAILABILITY AND IMPLEMENTATION: CLAUDIO is available as open-source software under the MIT license at https://github.com/KohlbacherLab/CLAUDIO.


Assuntos
Peptídeos , Software , Peptídeos/química , Espectrometria de Massas , Reagentes de Ligações Cruzadas/química
4.
Mol Cell Proteomics ; 19(12): 2157-2168, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067342

RESUMO

Cross-linking MS (XL-MS) has been recognized as an effective source of information about protein structures and interactions. In contrast to regular peptide identification, XL-MS has to deal with a quadratic search space, where peptides from every protein could potentially be cross-linked to any other protein. To cope with this search space, most tools apply different heuristics for search space reduction. We introduce a new open-source XL-MS database search algorithm, OpenPepXL, which offers increased sensitivity compared with other tools. OpenPepXL searches the full search space of an XL-MS experiment without using heuristics to reduce it. Because of efficient data structures and built-in parallelization OpenPepXL achieves excellent runtimes and can also be deployed on large compute clusters and cloud services while maintaining a slim memory footprint. We compared OpenPepXL to several other commonly used tools for identification of noncleavable labeled and label-free cross-linkers on a diverse set of XL-MS experiments. In our first comparison, we used a data set from a fraction of a cell lysate with a protein database of 128 targets and 128 decoys. At 5% FDR, OpenPepXL finds from 7% to over 50% more unique residue pairs (URPs) than other tools. On data sets with available high-resolution structures for cross-link validation OpenPepXL reports from 7% to over 40% more structurally validated URPs than other tools. Additionally, we used a synthetic peptide data set that allows objective validation of cross-links without relying on structural information and found that OpenPepXL reports at least 12% more validated URPs than other tools. It has been built as part of the OpenMS suite of tools and supports Windows, macOS, and Linux operating systems. OpenPepXL also supports the MzIdentML 1.2 format for XL-MS identification results. It is freely available under a three-clause BSD license at https://openms.org/openpepxl.


Assuntos
Reagentes de Ligações Cruzadas/química , Peptídeos/análise , Software , Algoritmos , Sequência de Aminoácidos , Bases de Dados de Proteínas , Células HEK293 , Humanos , Espectrometria de Massas , Modelos Moleculares , Peptídeos/química , Ribossomos/metabolismo
5.
Mol Pharmacol ; 98(2): 143-155, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32616523

RESUMO

The two-pore domain potassium channel (K2P-channel) THIK-1 has several predicted protein kinase A (PKA) phosphorylation sites. In trying to elucidate whether THIK-1 is regulated via PKA, we expressed THIK-1 channels in a mammalian cell line (CHO cells) and used the phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine (IBMX) as a pharmacological tool to induce activation of PKA. Using the whole-cell patch-clamp recording, we found that THIK-1 currents were inhibited by application of IBMX with an IC50 of 120 µM. Surprisingly, intracellular application of IBMX or of the second messenger cAMP via the patch pipette had no effect on THIK-1 currents. In contrast, extracellular application of IBMX produced a rapid and reversible inhibition of THIK-1. In patch-clamp experiments with outside-out patches, THIK-1 currents were also inhibited by extracellular application of IBMX. Expression of THIK-1 channels in Xenopus oocytes was used to compare wild-type channels with mutated channels. Mutation of the putative PKA phosphorylation sites did not change the inhibitory effect of IBMX on THIK-1 currents. Mutational analysis of all residues of the (extracellular) helical cap of THIK-1 showed that mutation of the arginine residue at position 92, which is in the linker between cap helix 2 and pore helix 1, markedly reduced the inhibitory effect of IBMX. This flexible linker region, which is unique for each K2P-channel subtype, may be a possible target of channel-specific blockers. SIGNIFICANCE STATEMENT: The potassium channel THIK-1 is strongly expressed in the central nervous system. We studied the effect of 3-isobutyl-1-methyl-xanthine (IBMX) on THIK-1 currents. IBMX inhibits breakdown of cAMP and thus activates protein kinase A (PKA). Surprisingly, THIK-1 current was inhibited when IBMX was applied from the extracellular side of the membrane, but not from the intracellular side. Our results suggest that IBMX binds directly to the channel and that the inhibition of THIK-1 current was not related to activation of PKA.


Assuntos
1-Metil-3-Isobutilxantina/farmacologia , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Arginina/genética , Sítios de Ligação/efeitos dos fármacos , Células CHO , Cricetulus , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Mutação , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Ratos , Xenopus
6.
Mol Cell Proteomics ; 16(7): 1275-1285, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28515314

RESUMO

The first stable version of the Proteomics Standards Initiative mzIdentML open data standard (version 1.1) was published in 2012-capturing the outputs of peptide and protein identification software. In the intervening years, the standard has become well-supported in both commercial and open software, as well as a submission and download format for public repositories. Here we report a new release of mzIdentML (version 1.2) that is required to keep pace with emerging practice in proteome informatics. New features have been added to support: (1) scores associated with localization of modifications on peptides; (2) statistics performed at the level of peptides; (3) identification of cross-linked peptides; and (4) support for proteogenomics approaches. In addition, there is now improved support for the encoding of de novo sequencing of peptides, spectral library searches, and protein inference. As a key point, the underlying XML schema has only undergone very minor modifications to simplify as much as possible the transition from version 1.1 to version 1.2 for implementers, but there have been several notable updates to the format specification, implementation guidelines, controlled vocabularies and validation software. mzIdentML 1.2 can be described as backwards compatible, in that reading software designed for mzIdentML 1.1 should function in most cases without adaptation. We anticipate that these developments will provide a continued stable base for software teams working to implement the standard. All the related documentation is accessible at http://www.psidev.info/mzidentml.


Assuntos
Biologia Computacional/normas , Proteômica/normas , Bases de Dados de Proteínas , Software
7.
Bioinformatics ; 31(20): 3383-6, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26079347

RESUMO

UNLABELLED: JSBML, the official pure Java programming library for the Systems Biology Markup Language (SBML) format, has evolved with the advent of different modeling formalisms in systems biology and their ability to be exchanged and represented via extensions of SBML. JSBML has matured into a major, active open-source project with contributions from a growing, international team of developers who not only maintain compatibility with SBML, but also drive steady improvements to the Java interface and promote ease-of-use with end users. AVAILABILITY AND IMPLEMENTATION: Source code, binaries and documentation for JSBML can be freely obtained under the terms of the LGPL 2.1 from the website http://sbml.org/Software/JSBML. More information about JSBML can be found in the user guide at http://sbml.org/Software/JSBML/docs/. CONTACT: jsbml-development@googlegroups.com or andraeger@eng.ucsd.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Modelos Biológicos , Software , Biologia de Sistemas , Simulação por Computador , Linguagens de Programação
8.
bioRxiv ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39257782

RESUMO

UV (ultra-violet) crosslinking with mass spectrometry (XL-MS) has been established for identifying RNA-and DNA-binding proteins along with their domains and amino acids involved. Here, we explore chemical XL-MS for RNA-protein, DNA-protein, and nucleotide-protein complexes in vitro and in vivo . We introduce a specialized nucleotide-protein-crosslink search engine, NuXL, for robust and fast identification of such crosslinks at amino acid resolution. Chemical XL-MS complements UV XL-MS by generating different crosslink species, increasing crosslinked protein yields in vivo almost four-fold and thus it expands the structural information accessible via XL-MS. Our workflow facilitates integrative structural modelling of nucleic acid-protein complexes and adds spatial information to the described RNA-binding properties of enzymes, for which crosslinking sites are often observed close to their cofactor-binding domains. In vivo UV and chemical XL-MS data from E. coli cells analysed by NuXL establish a comprehensive nucleic acid-protein crosslink inventory with crosslink sites at amino acid level for more than 1500 proteins. Our new workflow combined with the dedicated NuXL search engine identified RNA crosslinks that cover most RNA-binding proteins, with DNA and RNA crosslinks detected in transcriptional repressors and activators.

9.
Structure ; 28(11): 1259-1268, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33065067

RESUMO

Cross-linking mass spectrometry (MS) has substantially matured as a method over the past 2 decades through parallel development in multiple labs, demonstrating its applicability to protein structure determination, conformation analysis, and mapping protein interactions in complex mixtures. Cross-linking MS has become a much-appreciated and routinely applied tool, especially in structural biology. Therefore, it is timely that the community commits to the development of methodological and reporting standards. This white paper builds on an open process comprising a number of events at community conferences since 2015 and identifies aspects of Cross-linking MS for which guidelines should be developed as part of a Cross-linking MS standards initiative.


Assuntos
Reagentes de Ligações Cruzadas/química , Espectrometria de Massas/métodos , Proteínas/ultraestrutura , Proteômica/métodos , Guias como Assunto , Humanos , Cooperação Internacional , Espectrometria de Massas/instrumentação , Espectrometria de Massas/normas , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteômica/instrumentação , Proteômica/normas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA