Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Gene Ther ; 30(4): 381-401, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30734584

RESUMO

The introduction of chimeric antigen receptors (CARs) to augment the anticancer activity of immune cells represents one of the major clinical advances in recent years. This work demonstrates that sorted CAR natural killer (NK) cells have improved antileukemia activity compared to control NK cells that lack a functional CAR. However, in terms of viability, effectiveness, risk of side effects, and clinical practicality and applicability, an important question is whether gene-modified NK cell lines represent better CAR effector cells than primary human donor CAR-NK (CAR-dNK) cells. Comparison of the functional activities of sorted CAR-NK cells generated using the NK-92 cell line with those generated from primary human dNK cells demonstrated that CAR-NK-92 cells had stronger cytotoxic activity against leukemia cells compared to CAR-dNK cells. CAR-NK-92 and CAR-dNK cells had similar CD107a surface expression upon co-incubation with leukemia cells. However, CAR-NK-92 cells secreted higher granzyme A and interleukin-17A levels, while CAR-dNK cells secreted more tumor necrosis factor alpha, interferon gamma, and granulysin. In addition, CAR-NK-92 cells revealed a significantly higher potential for adverse side effects against nonmalignant cells. In short, this work shows the feasibility for further development of CAR-NK strategies to treat leukemia.


Assuntos
Imunoterapia Adotiva , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Alpharetrovirus/genética , Animais , Biomarcadores , Biomarcadores Tumorais , Comunicação Celular/imunologia , Degranulação Celular/imunologia , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Expressão Gênica , Vetores Genéticos/genética , Humanos , Imunofenotipagem , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Masculino , Camundongos , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Especificidade do Receptor de Antígeno de Linfócitos T , Transgenes
2.
Cells ; 4(1): 21-39, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25585297

RESUMO

The primary goal of immune monitoring with ELISPOT is to measure the number of T cells, specific for any antigen, accurately and reproducibly between different laboratories. In ELISPOT assays, antigen-specific T cells secrete cytokines, forming spots of different sizes on a membrane with variable background intensities. Due to the subjective nature of judging maximal and minimal spot sizes, different investigators come up with different numbers. This study aims to determine whether statistics-based, automated size-gating can harmonize the number of spot counts calculated between different laboratories. We plated PBMC at four different concentrations, 24 replicates each, in an IFN-γ ELISPOT assay with HCMV pp65 antigen. The ELISPOT plate, and an image file of the plate was counted in nine different laboratories using ImmunoSpot® Analyzers by (A) Basic Count™ relying on subjective counting parameters set by the respective investigators and (B) SmartCount™, an automated counting protocol by the ImmunoSpot® Software that uses statistics-based spot size auto-gating with spot intensity auto-thresholding. The average coefficient of variation (CV) for the mean values between independent laboratories was 26.7% when counting with Basic Count™, and 6.7% when counting with SmartCount™. Our data indicates that SmartCount™ allows harmonization of counting ELISPOT results between different laboratories and investigators.

3.
Front Immunol ; 4: 46, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23450662

RESUMO

In the context of kidney transplantation, little is known about the involvement of natural killer (NK) cells in the immune reaction leading to either rejection or immunological tolerance under immunosuppression. Therefore, the peripheral NK cell repertoire of patients after kidney transplantation was investigated in order to identify NK cell subsets that may be associated with the individual immune status at the time of their protocol biopsies for histopathological evaluation of the graft. Alterations in the peripheral NK cell repertoire could be correlated to the type of immunosuppression, i.e., calcineurin-inhibitors like Cyclosporin A vs. Tacrolimus with or without addition of mTOR inhibitors. Here, we could demonstrate that the NK cell repertoire in peripheral blood of kidney transplant patients differs significantly from healthy individuals. The presence of donor-specific antibodies was associated with reduced numbers of CD56(dim) NK cells. Moreover, in patients, down-modulation of CD16 and CD6 on CD56(dim) NK cells was observed with significant differences between Cyclosporin A- and Tac-treated patients. Tac-treatment was associated with decreased CD69, HLA-DR, and increased CD94/NKG2A expression in CD56(dim) NK cells indicating that the quality of the immunosuppressive treatment impinges on the peripheral NK cell repertoire. In vitro studies with peripheral blood mononuclear cells of healthy donors showed that this modulation of CD16, CD6, CD69, and HLA-DR could also be induced experimentally. The presence of calcineurin or mTOR inhibitors had also functional consequences regarding degranulation and interferon-γ-production against K562 target cells, respectively. In summary, we postulate that the NK cell composition in peripheral blood of kidney transplanted patients represents an important hallmark of the efficacy of immunosuppression and may be even informative for the immune status after transplantation in terms of rejection vs. drug-induced allograft tolerance. Thus, NK cells can serve as sensors for immunosuppression and may be utilized for future strategies of an individualized adjustment of immunosuppression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA