Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 558(7709): 280-283, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899477

RESUMO

Catalysts are widely used to increase reaction rates. They function by stabilizing the transition state of the reaction at their active site, where the atomic arrangement ensures favourable interactions 1 . However, mechanistic understanding is often limited when catalysts possess multiple active sites-such as sites associated with either the step edges or the close-packed terraces of inorganic nanoparticles2-4-with distinct activities that cannot be measured simultaneously. An example is the oxidation of carbon monoxide over platinum surfaces, one of the oldest and best studied heterogeneous reactions. In 1824, this reaction was recognized to be crucial for the function of the Davy safety lamp, and today it is used to optimize combustion, hydrogen production and fuel-cell operation5,6. The carbon dioxide products are formed in a bimodal kinetic energy distribution7-13; however, despite extensive study 5 , it remains unclear whether this reflects the involvement of more than one reaction mechanism occurring at multiple active sites12,13. Here we show that the reaction rates at different active sites can be measured simultaneously, using molecular beams to controllably introduce reactants and slice ion imaging14,15 to map the velocity vectors of the product molecules, which reflect the symmetry and the orientation of the active site 16 . We use this velocity-resolved kinetics approach to map the oxidation rates of carbon monoxide at step edges and terrace sites on platinum surfaces, and find that the reaction proceeds through two distinct channels11-13: it is dominated at low temperatures by the more active step sites, and at high temperatures by the more abundant terrace sites. We expect our approach to be applicable to a wide range of heterogeneous reactions and to provide improved mechanistic understanding of the contribution of different active sites, which should be useful in the design of improved catalysts.

2.
J Chem Phys ; 147(1): 013939, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28688411

RESUMO

We describe a new instrument that uses ion imaging to study molecular beam-surface scattering and surface desorption kinetics, allowing independent determination of both residence times on the surface and scattering velocities of desorbing molecules. This instrument thus provides the capability to derive true kinetic traces, i.e., product flux versus residence time, and allows dramatically accelerated data acquisition compared to previous molecular beam kinetics methods. The experiment exploits non-resonant multiphoton ionization in the near-IR using a powerful 150-fs laser pulse, making detection more general than previous experiments using resonance enhanced multiphoton ionization. We demonstrate the capabilities of the new instrument by examining the desorption kinetics of CO on Pd(111) and Pt(111) and obtain both pre-exponential factors and activation energies of desorption. We also show that the new approach is compatible with velocity map imaging.

3.
J Phys Chem A ; 120(27): 5399-407, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27073931

RESUMO

We present a 1 + 1' resonance-enhanced multiphoton ionization (REMPI) scheme for acetylene via the linear G̃ 4sσ (1)Πu Rydberg state, offering partial rotational resolution and the possibility to detect excitation in both the cis- and trans-bending modes. The resonant transition to the G̃ state is driven by a vacuum ultraviolet (VUV) photon, generated by resonant four-wave mixing (FWM) in krypton. Ionization from the short-lived G̃ state then occurs quickly, driven by the high intensity of the residual light from the FWM process. We have observed nine bands in the region between 79 200 cm(-1) and 80 500 cm(-1) in C2H2 and C2D2. We compare our results with published spectra in this region and suggest alternative assignments for some of the Renner-Teller split bands. Similar REMPI schemes should be applicable to other small molecules with picosecond lifetime Rydberg states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA