Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Cell ; 83(23): 4386-4397.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37995686

RESUMO

The multi-pass transmembrane protein ACCELERATED CELL DEATH 6 (ACD6) is an immune regulator in Arabidopsis thaliana with an unclear biochemical mode of action. We have identified two loci, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1) and its paralog MHA1-LIKE (MHA1L), that code for ∼7 kDa proteins, which differentially interact with specific ACD6 variants. MHA1L enhances the accumulation of an ACD6 complex, thereby increasing the activity of the ACD6 standard allele for regulating plant growth and defenses. The intracellular ankyrin repeats of ACD6 are structurally similar to those found in mammalian ion channels. Several lines of evidence link increased ACD6 activity to enhanced calcium influx, with MHA1L as a direct regulator of ACD6, indicating that peptide-regulated ion channels are not restricted to animals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Anquirinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Canais Iônicos/genética , Canais Iônicos/metabolismo , Imunidade Vegetal/genética
2.
Plant Cell ; 34(10): 4066-4087, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35880836

RESUMO

Most plant species can form symbioses with arbuscular mycorrhizal fungi (AMFs), which may enhance the host plant's acquisition of soil nutrients. In contrast to phosphorus nutrition, the molecular mechanism of mycorrhizal nitrogen (N) uptake remains largely unknown, and its physiological relevance is unclear. Here, we identified a gene encoding an AMF-inducible ammonium transporter, ZmAMT3;1, in maize (Zea mays) roots. ZmAMT3;1 was specifically expressed in arbuscule-containing cortical cells and the encoded protein was localized at the peri-arbuscular membrane. Functional analysis in yeast and Xenopus oocytes indicated that ZmAMT3;1 mediated high-affinity ammonium transport, with the substrate NH4+ being accessed, but likely translocating uncharged NH3. Phosphorylation of ZmAMT3;1 at the C-terminus suppressed transport activity. Using ZmAMT3;1-RNAi transgenic maize lines grown in compartmented pot experiments, we demonstrated that substantial quantities of N were transferred from AMF to plants, and 68%-74% of this capacity was conferred by ZmAMT3;1. Under field conditions, the ZmAMT3;1-dependent mycorrhizal N pathway contributed >30% of postsilking N uptake. Furthermore, AMFs downregulated ZmAMT1;1a and ZmAMT1;3 protein abundance and transport activities expressed in the root epidermis, suggesting a trade-off between mycorrhizal and direct root N-uptake pathways. Taken together, our results provide a comprehensive understanding of mycorrhiza-dependent N uptake in maize and present a promising approach to improve N-acquisition efficiency via plant-microbe interactions.


Assuntos
Compostos de Amônio , Micorrizas , Compostos de Amônio/metabolismo , Regulação da Expressão Gênica de Plantas , Micorrizas/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Solo , Zea mays/metabolismo
3.
J Exp Bot ; 75(7): 2127-2142, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38066636

RESUMO

NRT2.1, the major high affinity nitrate transporter in roots, can be phosphorylated at five different sites within the N- and the C-terminus. Here, we characterized the functional relationship of two N-terminal phosphorylation sites, S21 and S28, in Arabidopsis. Based on a site-specific correlation network, we identified a receptor kinase (HPCAL1, AT5G49770), phosphorylating NRT2.1 at S21 and resulting in active nitrate uptake. HPCAL1 itself was regulated by phosphorylation at S839 and S870 within its kinase domain. In the active state, when S839 was dephosphorylated and S870 was phosphorylated, HPCAL1 was found to interact with the N-terminus of NRT2.1, mainly when S28 was dephosphorylated. Phosphorylation of NRT2.1 at S21 resulted in a reduced interaction of NRT2.1 with its activator NAR2.1, but nitrate transport activity remained. By contrast, phosphorylated NRT2.1 at S28 enhanced the interaction with NAR2.1, but reduced the interaction with HPCAL1. Here we identified HPCAL1 as the kinase affecting this phospho-switch through phosphorylation of NRT2.1 at S21.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Nitratos/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Transportadores de Nitrato , Regulação da Expressão Gênica de Plantas
4.
Plant Physiol ; 190(2): 1275-1288, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35762968

RESUMO

Ammonium uptake at plant roots is regulated at the transcriptional, posttranscriptional, and posttranslational levels. Phosphorylation by the protein kinase calcineurin B-like protein (CBL)-interacting protein kinase 23 (CIPK23) transiently inactivates ammonium transporters (AMT1s), but the phosphatases activating AMT1s remain unknown. Here, we identified the PP2C phosphatase abscisic acid (ABA) insensitive 1 (ABI1) as an activator of AMT1s in Arabidopsis (Arabidopsis thaliana). We showed that high external ammonium concentrations elevate the level of the stress phytohormone ABA, possibly by de-glycosylation. Active ABA was sensed by ABI1-PYR1-like () complexes followed by the inactivation of ABI1, in turn activating CIPK23. Under favorable growth conditions, ABI1 reduced AMT1;1 and AMT1;2 phosphorylation, both by binding and inactivating CIPK23. ABI1 further directly interacted with AMT1;1 and AMT1;2, which would be a prerequisite for dephosphorylation of the transporter by ABI1. Thus, ABI1 is a positive regulator of ammonium uptake, coupling nutrient acquisition to abiotic stress signaling. Elevated ABA reduces ammonium uptake during stress situations, such as ammonium toxicity, whereas ABI1 reactivates AMT1s under favorable growth conditions.


Assuntos
Compostos de Amônio , Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Compostos de Amônio/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcineurina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
5.
PLoS Genet ; 16(2): e1008634, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32069286

RESUMO

The dimorphic transition from the yeast to the filamentous form of growth allows cells to explore their environment for more suitable niches and is often crucial for the virulence of pathogenic fungi. In contrast to their Mep1/3 paralogues, fungal Mep2-type ammonium transport proteins of the conserved Mep-Amt-Rh family have been assigned an additional receptor role required to trigger the filamentation signal in response to ammonium scarcity. Here, genetic, kinetic and structure-function analyses were used to shed light on the poorly characterized signaling role of Saccharomyces cerevisiae Mep2. We show that Mep2 variants lacking the C-terminal tail conserve the ability to induce filamentation, revealing that signaling can proceed in the absence of exclusive binding of a putative partner to the largest cytosolic domain of the protein. Our data support that filamentation signaling requires the conformational changes accompanying substrate translocation through the pore crossing the hydrophobic core of Mep2. pHluorin reporter assays show that the transport activity of Mep2 and of non-signaling Mep1 differently affect yeast cytosolic pH in vivo, and that the unique pore variant Mep2H194E, with apparent uncoupling of transport and signaling functions, acquires increased ability of acidification. Functional characterization in Xenopus oocytes reveals that Mep2 mediates electroneutral substrate translocation while Mep1 performs electrogenic transport. Our findings highlight that the Mep2-dependent filamentation induction is connected to its specific transport mechanism, suggesting a role of pH in signal mediation. Finally, we show that the signaling process is conserved for the Mep2 protein from the human pathogen Candida albicans.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Hifas/metabolismo , Domínios Proteicos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Compostos de Amônio/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Genes Reporter/genética , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Mutação , Oócitos , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia , Xenopus
6.
J Biol Chem ; 295(10): 3362-3370, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31988244

RESUMO

Ammonium transporters (AMT), methylamine permeases (Mep), and the more distantly related rhesus factors (Rh) are trimeric membrane proteins present in all domains of life. AMT/Mep/Rhs are highly selective membrane proteins required for ammonium uptake or release, and they efficiently exclude the similarly sized K+ ion. Previously reported crystal structures have revealed that each transporter subunit contains a unique hydrophobic but occluded central pore, but it is unclear whether the base (NH3) or NH3 coupled with an H+ are transported. Here, using expression of two plant AMTs (AtAMT1;2 and AMT2) in budding yeast, we found that systematic replacements in the conserved twin-histidine motif, a hallmark of most AMT/Mep/Rh, alter substrate recognition, transport capacities, N isotope selection, and selectivity against K+ AMT-specific differences were found for histidine variants. Variants that completely lost ammonium N isotope selection, a feature likely associated with NH4+ deprotonation during passage, substantially transported K+ in addition to NH4+ Of note, the twin-histidine motif was not essential for ammonium transport. However, it conferred key AMT features, such as high substrate affinity and selectivity against alkali cations via an NH4+ deprotonation mechanism. Our findings indicate that the twin-His motif is the core structure responsible for substrate deprotonation and isotopic preferences in AMT pores and that decreased deprotonation capacity is associated with reduced selectivity against K+ We conclude that optimization for ammonium transport in plant AMT represents a compromise between substrate deprotonation for optimal selectivity and high substrate affinity and transport rates.


Assuntos
Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Histidina/metabolismo , Proteínas de Plantas/metabolismo , Compostos de Amônio/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Histidina/química , Íons/química , Cinética , Metilaminas/metabolismo , Mutagênese Sítio-Dirigida , Isótopos de Nitrogênio/química , Isótopos de Nitrogênio/metabolismo , Oócitos/metabolismo , Proteínas de Plantas/genética , Potássio/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Especificidade por Substrato , Xenopus laevis/crescimento & desenvolvimento
7.
Physiol Plant ; 171(3): 328-342, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32335941

RESUMO

Conventional wheat production utilizes fertilizers of various nitrogen forms. Sole ammonium nutrition has been shown to improve grain quality, despite the potential toxic effects of ammonium at elevated concentrations. We therefore investigated the responses of young seedlings of winter wheat to different nitrogen sources (NH4 NO3 = NN, NH4 Cl = NNH4 + and KNO3 = NNO3 - ). Growth with ammonium-nitrate was superior. However, an elevated concentration of sole ammonium caused severe toxicity symptoms and significant decreases in biomass accumulation. We addressed the molecular background of the ammonium uptake by gathering an overview of the ammonium transporter (AMT) of wheat (Triticum aestivum) and characterized the putative high-affinity TaAMT1 transporters. TaAMT1;1 and TaAMT1;2 were both active in yeast and Xenopus laevis oocytes and showed saturating high-affinity ammonium transport characteristics. Interestingly, nitrogen starvation, as well as ammonium resupply to starved seedlings triggered an increase in the expression of the TaAMT1s. The presence of nitrate seamlessly repressed their expression. We conclude that wheat showed the ability to respond robustly to sole ammonium supply by adopting distinct physiological and transcriptional responses.


Assuntos
Compostos de Amônio , Plântula , Compostos de Amônio/toxicidade , Fertilizantes , Nitratos , Nitrogênio , Raízes de Plantas , Plântula/genética , Triticum/genética
8.
Physiol Plant ; 173(3): 1207-1220, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34333765

RESUMO

White lupin (Lupinus albus L.) forms brush-like root structures called cluster roots under phosphorus-deficient conditions. Clusters secrete citrate and other organic compounds to mobilize sparingly soluble soil phosphates. In the context of aluminum toxicity tolerance mechanisms in other species, citrate is released via a subgroup of MATE/DTX proteins (multidrug and toxic compound extrusion/detoxification). White lupin contains 56 MATE/DTX genes. Many of these are closely related to gene orthologs with known substrates in other species. LaMATE is a marker gene for functional, mature clusters and is, together with its close homolog LaMATE3, a candidate for the citrate release. Both were highest expressed in mature clusters and when expressed in oocytes, induced inward-rectifying currents that were likely carried by endogenous channels. No citrate efflux was associated with LaMATE and LaMATE3 expression in oocytes. Furthermore, citrate secretion was largely unaffected in P-deficient composite mutant plants with genome-edited or RNAi-silenced LaMATE in roots. Moderately lower concentrations of citrate and malate in the root tissue and consequently less organic acid anion secretion and lower malate in the xylem sap were identified. Interestingly, however, less genistein was consistently found in mutant exudates, opening the possibility that LaMATE is involved in isoflavonoid release.


Assuntos
Lupinus , Ácido Cítrico , Lupinus/genética , Fosfatos , Fósforo , Raízes de Plantas/genética
9.
Plant Cell Environ ; 43(7): 1691-1706, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32239684

RESUMO

Under phosphorus (P) deficiency, Lupinus albus (white lupin) releases large amounts of organic acid anions from specialized root structures, so-called cluster or proteoid roots, to mobilize and acquire sparingly soluble phosphates from a restricted soil volume. The molecular mechanisms underlying this release and its regulation are, however, poorly understood. Here, we identified a gene belonging to the aluminium (Al)-activated malate transporter (ALMT) family that specifically contributes to malate, but not citrate release. This gene, LaALMT1, was most prominently expressed in the root apices under P deficiency, including those of cluster roots and was also detected in the root stele. Contrary to several ALMT homologs in other species, the expression was not stimulated, but moderately repressed by Al. Aluminium-independent malate currents were recorded from the plasma membrane localized LaALMT1 expressed in Xenopus oocytes. In composite lupins with transgenic roots, LaALMT1 was efficiently mutated by CRISPR-Cas9, leading to diminished malate efflux and lower xylem sap malate concentrations. When grown in an alkaline P-deficient soil, mutant shoot phosphate concentrations were similar, but iron and potassium concentrations were diminished in old leaves, suggesting a role for ALMT1 in metal root to shoot translocation, a function that was also supported by growth in hydroponics.


Assuntos
Lupinus/metabolismo , Malatos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Lupinus/genética , Proteínas de Membrana Transportadoras/genética , Fósforo/deficiência , Filogenia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Xilema/metabolismo
10.
Plant Cell ; 29(2): 409-422, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28188265

RESUMO

Ion transport in plants is not only strictly regulated on a transcriptional level, but it is also regulated posttranslationally. Enzyme modifications such as phosphorylation provide rapid regulation of many plant ion transporters and channels. Upon exposure to high ammonium concentrations in the rhizosphere, the high-affinity ammonium transporters (AMTs) in Arabidopsis thaliana are efficiently inactivated by phosphorylation to avoid toxic accumulation of cytoplasmic ammonium. External ammonium stimulates the phosphorylation of a conserved threonine in the cytosolic AMT1 C terminus, which allosterically inactivates AMT1 trimers. Using a genetic screen, we found that CALCINEURIN B-LIKE INTERACTING PROTEIN KINASE23 (CIPK23), a kinase that also regulates the most abundant NO3- transporter, NPF6;3, and activates the K+ channel AKT1, inhibits ammonium transport and modulates growth sensitivity to ammonium. Loss of CIPK23 increased root NH4+ uptake after ammonium shock and conferred hypersensitivity to ammonium and to the transport analog methylammonium. CIPK23 interacts with AMT1;1 and AMT1;2 in yeast, oocytes, and in planta. Inactivation of AMT1;2 by direct interaction with CIPK23 requires kinase activity and the calcineurin B-like binding protein CBL1. Since K+, NO3-, and NH4+ are major ions taken up by plants, CIPK23 appears to occupy a key position in controlling ion balance and ion homeostasis in the plant cell.


Assuntos
Compostos de Amônio/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional , Mutação , Fenótipo , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Xenopus laevis
11.
Mycorrhiza ; 30(6): 735-747, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32820366

RESUMO

While plants mainly rely on the use of inorganic nitrogen sources like ammonium and nitrate, soil-borne microorganisms like the ectomycorrhizal fungus Hebeloma cylindrosporum can also take up soil organic N in the form of amino acids and peptides that they use as nitrogen and carbon sources. Following the previous identification and functional expression in yeast of two PTR-like peptide transporters, the present study details the functions and substrates of HcPTR2A and HcPTR2B by analysing their transport kinetics in Xenopus laevis oocytes. While both transporters mediated high-affinity di- and tripeptide transport, HcPTR2A also showed low-affinity transport of several amino acids-mostly hydrophobic ones with large side chains.


Assuntos
Hebeloma , Proteínas de Membrana Transportadoras , Micorrizas , Regulação Fúngica da Expressão Gênica , Hebeloma/genética , Proteínas de Membrana Transportadoras/genética
12.
J Exp Bot ; 70(18): 4919-4930, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31087098

RESUMO

In plants, nutrient transporters require tight regulation to ensure optimal uptake in complex environments. The activities of many nutrient transporters are post-translationally regulated by reversible phosphorylation, allowing rapid adaptation to variable environmental conditions. Here, we show that the Arabidopsis root epidermis-expressed ammonium transporter AtAMT1;3 was dynamically (de-)phosphorylated at multiple sites in the cytosolic C-terminal region (CTR) responding to ammonium and nitrate signals. Under ammonium resupply rapid phosphorylation of a Thr residue (T464) in the conserved part of the CTR (CTRC) effectively inhibited AtAMT1;3-dependent NH4+ uptake. Moreover, phosphorylation of Thr (T494), one of three phosphorylation sites in the non-conserved part of the CTR (CRTNC), moderately decreased the NH4+ transport activity of AtAMT1;3, as deduced from functional analysis of phospho-mimic mutants in yeast, oocytes, and transgenic Arabidopsis. Double phospho-mutants indicated a role of T494 in fine-tuning the NH4+ transport activity when T464 was non-phosphorylated. Transient dephosphorylation of T494 with nitrate resupply closely paralleled a transient increase in ammonium uptake. These results suggest that T464 phosphorylation at the CTRC acts as a prime switch to prevent excess ammonium influx, while T494 phosphorylation at the CTRNC fine tunes ammonium uptake in response to nitrate. This provides a sophisticated regulatory mechanism for plant ammonium transporters to achieve optimal ammonium uptake in response to various nitrogen forms.


Assuntos
Compostos de Amônio/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico , Fosforilação
13.
Ann Bot ; 124(6): 961-968, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30759179

RESUMO

BACKGROUND AND AIMS: Root hairs are single-cell extensions of the epidermis that face into the soil and increase the root-soil contact surface. Root hairs enlarge the rhizosphere radially and are very important for taking up water and sparingly soluble nutrients, such as the poorly soil-mobile phosphate. In order to quantify the importance of root hairs for maize, a mutant and the corresponding wild type were compared. METHODS: The rth2 maize mutant with very short root hairs was assayed for growth and phosphorus (P) acquisition in a slightly alkaline soil with low P and limited water supply in the absence of mycorrhization and with ample P supply. KEY RESULTS: Root and shoot growth was additively impaired under P deficiency and drought. Internal P concentrations declined with reduced water and P supply, whereas micronutrients (iron, zinc) were little affected. The very short root hairs in rth2 did not affect internal P concentrations, but the P content of juvenile plants was halved under combined stress. The rth2 plants had more fine roots and increased specific root length, but P mobilization traits (root organic carbon and phosphatase exudation) differed little. CONCLUSIONS: The results confirm the importance of root hairs for maize P uptake and content, but not for internal P concentrations. Furthermore, the performance of root hair mutants may be biased by secondary effects, such as altered root growth.


Assuntos
Secas , Zea mays , Fósforo , Raízes de Plantas , Solo
15.
J Proteome Res ; 14(8): 3362-71, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26179556

RESUMO

Plants increase their root surface with root hairs to improve the acquisition of nutrients from the soil. The unicellular character of root hairs and their position at the root surface make them an attractive system to investigate adaptive processes of rhizodermal cells that are in direct contact with the soil solution. In young maize seedlings, roots are densely covered with root hairs, although nutrient reserves in the seed are sufficient to support seedling growth rates for a few days. We used a label-free quantitative proteomics approach to study protein abundance adjustments in 4 day old root hairs grown in aeroponic culture in the presence and absence of several macro- and micronutrients. Compared to the proteome of root hairs developed under full nutrition, protein abundance changes were observed in pathways related to macronutrient (N, P, K, and Mg) deficiencies. For example, lack of N in the medium repressed the primary N metabolism pathway, increased amino acid synthesis, but repressed their degradation, and affected the primary carbon metabolism, such as glycolysis. Glycolysis was similarly affected by K and P deprivation, but the glycolytic pathway was negatively regulated by the absence of the micronutrients Fe and Zn. In contrast, the deprivation of Mn had almost no affect on the root hair proteome. Our results indicate either that the metabolism of very young root hairs adjusts to cellular nutrient deficiencies that have been already experienced or that root hairs sense the external lack of specific nutrients in the nutrient solution and adjust their metabolism accordingly.


Assuntos
Micronutrientes/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Zea mays/metabolismo , Cromatografia Líquida , Análise por Conglomerados , Produção Agrícola/métodos , Cinética , Magnésio/metabolismo , Magnésio/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Micronutrientes/farmacologia , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Peptídeos/metabolismo , Fosfopeptídeos/metabolismo , Fósforo/metabolismo , Fósforo/farmacologia , Proteínas de Plantas/classificação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Potássio/metabolismo , Potássio/farmacologia , Proteoma/classificação , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
16.
J Biol Chem ; 289(17): 11650-11655, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24634212

RESUMO

The ammonium flux across prokaryotic, plant, and animal membranes is regulated by structurally related ammonium transporters (AMT) and/or related Rhesus (Rh) glycoproteins. Several plant AMT homologs, such as AtAMT1;2 from Arabidopsis, elicit ionic, ammonium-dependent currents when expressed in oocytes. By contrast, functional evidence for the transport of NH3 and the lack of coupled ionic currents has been provided for many Rh proteins. Furthermore, despite high resolution structures the transported substrate in many bacterial homologs, such as AmtB from Escherichia coli, is still unclear. In a heterologous genetic screen in yeast, AtAMT1;2 mutants with reduced transport activity were identified based on the resistance of yeast to the toxic transport analog methylamine. When expressed in oocytes, the reduced transport capacity was confirmed for either of the mutants Q67K, M72I,and W145S. Structural alignments suggest that these mutations were dispersed at subunit contact sites of trimeric AMTs, without direct contact to the pore lumen. Surprisingly, and in contrast to the wild type AtAMT1;2 transporter, ionic currents were not associated with the substrate transport in these mutants. Whether these data suggest that the wild type AtAMT1;2 functions as H(+)/NH3 co-transporter, as well as how the strict substrate coupling with protons is lost by the mutations, is discussed.


Assuntos
Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Canais Iônicos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Modelos Moleculares , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética
17.
J Plant Res ; 128(5): 839-48, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26008190

RESUMO

Root hairs expand the effective root surface to increase the uptake of nutrients and water from the soil. Here the local effects of the two major nitrogen sources, ammonium and nitrate, on root hairs were investigated using split plates. In three contrasting accessions of A. thaliana, namely Col-0, Tsu-0 and Sha, root hairs were differentially affected by the nitrogen forms and their concentration. Root hairs in Sha were short in the absence of nitrate. In Col-0, hair length was moderately decreased with increasing nitrate or ammonium. In all accessions, the root hair density was insensitive to 1,000-fold changes in the ammonium concentrations, when supplied locally as the exclusive nitrogen form. In contrast, the root hair density generally increased with nitrate as the exclusive local nitrogen source. The nitrate sensitivity was reduced at mM concentrations in a loss-of-function mutant of the nitrate transporter and sensor gene NRT1;1 (NPF6.3). Little differences with respect to ammonium were found in a mutant lacking four high affinity AMT-type ammonium transporters, but interestingly, the response to high nitrate was reduced and may indicate a general defect in nitrogen signaling in that mutant. Genetic diversity and the presence of the nitrogen transceptor NRT1;1 explain heterogeneity in the responses of root hairs to different nitrogen forms in Arabidopsis accessions.


Assuntos
Compostos de Amônio/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
18.
Plant Mol Biol ; 86(4-5): 485-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25164101

RESUMO

Ammonium transporters (AMTs) are crucial for the high affinity primary uptake and translocation of ammonium in plants. In the model legume Medicago truncatula, the genomic set of AMT-type ammonium transporters comprises eight members. Only four genes were abundantly expressed in young seedlings, both in roots and shoots. While the expression of all AMTs in the shoot was not affected by the nitrogen availability, the dominating MtAMT1;1 gene was repressed by nitrogen in roots, despite that cellular nitrogen concentrations were far above deficiency levels. A contrasting de-repression by nitrogen was observed for MtAMT1;4 and MtAMT2;1, which were both expressed at intermediate level. Weak expression was found for MtAMT1;2 and MtAMT2;3, while the other AMTs were not detected in young seedlings. When expressed from their endogenous promoters, translational fusion proteins of MtAMT1;1 and MtAMT2;1 with green fluorescent protein were co-localized in the plasma membrane of rhizodermal cells, but also detected in cortical root layers. Both transporter proteins similarly functionally complemented a yeast strain that is deficient in high affinity ammonium transport, both at acidic and neutral pH. The uptake into yeast mediated by these transporters saturated with Km AMT1;1 = 89 µM and Km AMT2;1 = 123 µM, respectively. When expressed in oocytes, MtAMT1;1 mediated much larger (15)N-ammonium uptake than MtAMT2;1, but NH4 (+) currents were only recorded for MtAMT1;1. These currents saturated with a voltage-dependent Km = 90 µM at -80 mV. The cellular localization and regulation of the AMTs suggests that MtAMT1;1 encodes the major high affinity ammonium transporter gene in low nitrogen grown young M. truncatula roots and despite the similar localization and substrate affinity, MtAMT2;1 appears functionally distinct and more important at higher nitrogen supply.


Assuntos
Compostos de Amônio/metabolismo , Medicago truncatula/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Animais , Membrana Celular/metabolismo , Feminino , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Medicago truncatula/genética , Potenciais da Membrana , Proteínas de Membrana Transportadoras/classificação , Proteínas de Membrana Transportadoras/genética , Microscopia Confocal , Oócitos/metabolismo , Oócitos/fisiologia , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xenopus laevis
19.
Front Plant Sci ; 15: 1339105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318495

RESUMO

The use of slow-release fertilizers and seed-fertilizers cause localized high-ammonium (NH4 +) environments in agricultural fields, adversely affecting wheat growth and development and delaying its yield. Thus, it is important to investigate the physiological responses of wheat and its tolerance to NH4 + stress to improve the adaptation of wheat to high NH4 + environments. In this study, the physiological mechanisms of ammonium tolerance in wheat (Triticum aestivum) were investigated in depth by comparative analysis of two cultivars: NH4 +-tolerant Xumai25 and NH4 +-sensitive Yangmai20. Cultivation under hydroponic conditions with high NH4 + (5 mM NH4 +, AN) and nitrate (5 mM NO3 -, NN), as control, provided insights into the nuanced responses of both cultivars. Compared to Yangmai20, Xumai25 displayed a comparatively lesser sensitivity to NH4 + stress, as evident by a less pronounced reduction in dry plant biomass and a milder adverse impact on root morphology. Despite similarities in NH4 + efflux and the expression levels of TaAMT1.1 and TaAMT1.2 between the two cultivars, Xumai25 exhibited higher NH4 + influx, while maintaining a lower free NH4 + concentration in the roots. Furthermore, Xumai25 showed a more pronounced increase in the levels of free amino acids, including asparagine, glutamine, and aspartate, suggesting a superior NH4 + assimilation capacity under NH4 + stress compared to Yangmai20. Additionally, the enhanced transcriptional regulation of vacuolar glucose transporter and glucose metabolism under NH4 + stress in Xumai25 contributed to an enhanced carbon skeleton supply, particularly of 2-oxoglutarate and pyruvate. Taken together, our results demonstrate that the NH4 + tolerance of Xumai25 is intricately linked to enhanced glucose metabolism and optimized glucose transport, which contributes to the robust NH4 + assimilation capacity.

20.
Curr Biol ; 34(7): 1479-1491.e6, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38490203

RESUMO

NRT1.1, a nitrate transceptor, plays an important role in nitrate binding, sensing, and nitrate-dependent lateral root (LR) morphology. However, little is known about NRT1.1-mediated nitrate signaling transduction through plasma membrane (PM)-localized proteins. Through in-depth phosphoproteome profiling using membranes of Arabidopsis roots, we identified receptor kinase QSK1 and plasma membrane H+-ATPase AHA2 as potential downstream components of NRT1.1 signaling in a mild low-nitrate (LN)-dependent manner. QSK1, as a functional kinase and molecular link, physically interacts with NRT1.1 and AHA2 at LN and specifically phosphorylates AHA2 at S899. Importantly, we found that LN, not high nitrate (HN), induces formation of the NRT1.1-QSK1-AHA2 complex in order to repress the proton efflux into the apoplast by increased phosphorylation of AHA2 at S899. Loss of either NRT1.1 or QSK1 thus results in a higher T947/S899 phosphorylation ratio on AHA2, leading to enhanced pump activity and longer LRs under LN. Our results uncover a regulatory mechanism in which NRT1.1, under LN conditions, promotes coreceptor QSK1 phosphorylation and enhances the NRT1.1-QSK1 complex formation to transduce LN sensing to the PM H+-ATPase AHA2, controlling the phosphorylation ratio of activating and inhibitory phosphorylation sites on AHA2. This then results in altered proton pump activity, apoplast acidification, and regulation of NRT1.1-mediated LR growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Nitratos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA