Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 181(6): 1218-1231.e27, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32492404

RESUMO

The discovery of the 2,000-year-old Dead Sea Scrolls had an incomparable impact on the historical understanding of Judaism and Christianity. "Piecing together" scroll fragments is like solving jigsaw puzzles with an unknown number of missing parts. We used the fact that most scrolls are made from animal skins to "fingerprint" pieces based on DNA sequences. Genetic sorting of the scrolls illuminates their textual relationship and historical significance. Disambiguating the contested relationship between Jeremiah fragments supplies evidence that some scrolls were brought to the Qumran caves from elsewhere; significantly, they demonstrate that divergent versions of Jeremiah circulated in parallel throughout Israel (ancient Judea). Similarly, patterns discovered in non-biblical scrolls, particularly the Songs of the Sabbath Sacrifice, suggest that the Qumran scrolls represent the broader cultural milieu of the period. Finally, genetic analysis divorces debated fragments from the Qumran scrolls. Our study demonstrates that interdisciplinary approaches enrich the scholar's toolkit.


Assuntos
Sequência de Bases/genética , Genética/história , Pele/metabolismo , Animais , Cristianismo/história , História Antiga , Humanos , Israel , Judaísmo/história
2.
Proc Natl Acad Sci U S A ; 117(10): 5358-5363, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094163

RESUMO

Although aerobic respiration is a hallmark of eukaryotes, a few unicellular lineages, growing in hypoxic environments, have secondarily lost this ability. In the absence of oxygen, the mitochondria of these organisms have lost all or parts of their genomes and evolved into mitochondria-related organelles (MROs). There has been debate regarding the presence of MROs in animals. Using deep sequencing approaches, we discovered that a member of the Cnidaria, the myxozoan Henneguya salminicola, has no mitochondrial genome, and thus has lost the ability to perform aerobic cellular respiration. This indicates that these core eukaryotic features are not ubiquitous among animals. Our analyses suggest that H. salminicola lost not only its mitochondrial genome but also nearly all nuclear genes involved in transcription and replication of the mitochondrial genome. In contrast, we identified many genes that encode proteins involved in other mitochondrial pathways and determined that genes involved in aerobic respiration or mitochondrial DNA replication were either absent or present only as pseudogenes. As a control, we used the same sequencing and annotation methods to show that a closely related myxozoan, Myxobolus squamalis, has a mitochondrial genome. The molecular results are supported by fluorescence micrographs, which show the presence of mitochondrial DNA in M. squamalis, but not in H. salminicola. Our discovery confirms that adaptation to an anaerobic environment is not unique to single-celled eukaryotes, but has also evolved in a multicellular, parasitic animal. Hence, H. salminicola provides an opportunity for understanding the evolutionary transition from an aerobic to an exclusive anaerobic metabolism.


Assuntos
Genoma Mitocondrial , Interações Hospedeiro-Parasita , Myxozoa/classificação , Myxozoa/genética , Salmão/parasitologia , Animais , Filogenia
3.
BMC Biol ; 16(1): 8, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338709

RESUMO

BACKGROUND: Caenorhabditis elegans nematodes are powerful model organisms, yet quantification of visible phenotypes is still often labor-intensive, biased, and error-prone. We developed WorMachine, a three-step MATLAB-based image analysis software that allows (1) automated identification of C. elegans worms, (2) extraction of morphological features and quantification of fluorescent signals, and (3) machine learning techniques for high-level analysis. RESULTS: We examined the power of WorMachine using five separate representative assays: supervised classification of binary-sex phenotype, scoring continuous-sexual phenotypes, quantifying the effects of two different RNA interference treatments, and measuring intracellular protein aggregation. CONCLUSIONS: WorMachine is suitable for analysis of a variety of biological questions and provides an accurate and reproducible analysis tool for measuring diverse phenotypes. It serves as a "quick and easy," convenient, high-throughput, and automated solution for nematode research.


Assuntos
Caenorhabditis elegans/genética , Testes Genéticos/métodos , Aprendizado de Máquina , Imagem Óptica/métodos , Fenótipo , Animais , Caenorhabditis elegans/anatomia & histologia , Feminino , Testes Genéticos/tendências , Aprendizado de Máquina/tendências , Masculino , Imagem Óptica/tendências
4.
Proc Natl Acad Sci U S A ; 112(48): 14912-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627241

RESUMO

The Myxozoa comprise over 2,000 species of microscopic obligate parasites that use both invertebrate and vertebrate hosts as part of their life cycle. Although the evolutionary origin of myxozoans has been elusive, a close relationship with cnidarians, a group that includes corals, sea anemones, jellyfish, and hydroids, is supported by some phylogenetic studies and the observation that the distinctive myxozoan structure, the polar capsule, is remarkably similar to the stinging structures (nematocysts) in cnidarians. To gain insight into the extreme evolutionary transition from a free-living cnidarian to a microscopic endoparasite, we analyzed genomic and transcriptomic assemblies from two distantly related myxozoan species, Kudoa iwatai and Myxobolus cerebralis, and compared these to the transcriptome and genome of the less reduced cnidarian parasite, Polypodium hydriforme. A phylogenomic analysis, using for the first time to our knowledge, a taxonomic sampling that represents the breadth of myxozoan diversity, including four newly generated myxozoan assemblies, confirms that myxozoans are cnidarians and are a sister taxon to P. hydriforme. Estimations of genome size reveal that myxozoans have one of the smallest reported animal genomes. Gene enrichment analyses show depletion of expressed genes in categories related to development, cell differentiation, and cell-cell communication. In addition, a search for candidate genes indicates that myxozoans lack key elements of signaling pathways and transcriptional factors important for multicellular development. Our results suggest that the degeneration of the myxozoan body plan from a free-living cnidarian to a microscopic parasitic cnidarian was accompanied by extreme reduction in genome size and gene content.


Assuntos
Evolução Molecular , Genoma , Myxobolus/genética , Filogenia , Animais , Genômica , Polypodium/parasitologia
5.
Biol Open ; 5(9): 1177-88, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27565761

RESUMO

The Weismann barrier postulates that genetic information passes only from the germline to the soma and not in reverse, thus providing an obstacle to the inheritance of acquired traits. Certain organisms such as planaria - flatworms that can reproduce through asymmetric fission - avoid the limitations of this barrier, thus blurring the distinction between the processes of inheritance and development. In this paper, we re-evaluate canonical ideas about the interaction between developmental, genetic and evolutionary processes through the lens of planaria. Biased distribution of epigenetic effects in asymmetrically produced parts of a regenerating organism could increase variation and therefore affect the species' evolution. The maintenance and fixing of somatic experiences, encoded via stable biochemical or physiological states, may contribute to evolutionary processes in the absence of classically defined generations. We discuss different mechanisms that could induce asymmetry between the two organisms that eventually develop from the regenerating parts, including one particularly fascinating source - the potential capacity of the brain to produce long-lasting epigenetic changes.

6.
Artigo em Inglês | MEDLINE | ID: mdl-24963773

RESUMO

The complete mitochondrial genome of the gilthead seabream Sparus aurata Linnaeus 1758, one of the world's most important mariculture species, was sequenced using next generation sequencing technology. The genome sequence is comprised of 16,652 bp exhibiting the canonical vertebrate mitochondria gene order. Regions of gene overlap, tRNA length, as well as start and stop codon were similar to those observed in other Sparidae. Phylogenetic reconstructions based on mitochondrial protein coding genes corroborate the view that Sparidae is paraphyletic and includes Centracanthidae.


Assuntos
Genoma Mitocondrial , Dourada/genética , Animais , Sequência de Bases , DNA Mitocondrial/genética , Fases de Leitura Aberta/genética , Filogenia
7.
Artigo em Inglês | MEDLINE | ID: mdl-25103446

RESUMO

The complete mitochondrial genome of the devil firefish Pterois miles (Bennett, 1828) was obtained using next generation sequencing approaches. The genome sequence was comprised of 16,497 bp exhibiting the standard vertebrate mitochondrial gene arrangement. Regions of gene overlap, tRNA lengths, as well as start and stop codons were similar to those observed in closely related families (i.e. Sebastidae, Peristediidae). Phylogenetic reconstructions support the polyphyly of Scorpaeniformes, and confirm the close relationship of Scorpaenidae and Sebastidae.


Assuntos
Peixes/genética , Genoma Mitocondrial , Animais , Sequência de Bases , DNA Concatenado/genética , DNA Mitocondrial/genética , Proteínas Mitocondriais/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA