Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 21(6): 2795-2812, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38747353

RESUMO

O-([18F]Fluoroethyl)-l-tyrosine ([18F]FET) is actively transported into the brain and cancer cells by LAT1 and possibly other amino acid transporters, which enables brain tumor imaging by positron emission tomography (PET). However, tumor delivery of this probe in the presence of competing amino acids may be limited by a relatively low affinity for LAT1. The aim of the present work was to evaluate the meta-substituted [18F]FET analog m-[18F]FET and the methyl ester [18F]FET-OMe, which were designed to improve tumor delivery by altering the physicochemical, pharmacokinetic, and/or transport properties. Both tracers could be prepared with good radiochemical yields of 41-56% within 66-90 min. Preclinical evaluation with [18F]FET as a reference tracer demonstrated reduced in vitro uptake of [18F]FET-OMe by U87 glioblastoma cells and no advantage for in vivo tumor imaging. In contrast, m-[18F]FET showed significantly improved in vitro uptake and accelerated in vivo tumor accumulation in an orthotopic glioblastoma model. As such, our work identifies m-[18F]FET as a promising alternative to [18F]FET for brain tumor imaging that deserves further evaluation with regard to its transport properties and in vivo biodistribution.


Assuntos
Neoplasias Encefálicas , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Tirosina , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Humanos , Camundongos , Tirosina/análogos & derivados , Tirosina/química , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Distribuição Tecidual , Radioisótopos de Flúor/química , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Camundongos Nus , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
2.
J Org Chem ; 89(6): 3821-3833, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38386004

RESUMO

Access to SuFExable compounds was remarkably simplified by introduction of the solid FO2S-donor SuFEx-IT. However, the published process for preparation of this reagent relies on the use of sulfuryl fluoride (SO2F2), which is difficult to obtain and highly toxic. Herein, we disclose a simple protocol for SO2F2-free, hectogram-scale preparation of the analogous desmethyl SuFEx-IT from inexpensive starting materials. The reagent was prepared in a high (85%) total yield and without chromatographic purification steps. In addition, we demonstrate the utility of desmethyl SuFEx-IT by successful preparation of a series of fluorosulfates and sulfamoyl fluorides in high to excellent yields. As such, our work recognizes desmethyl SuFEx-IT as a valuable alternative to common FO2S-donors and enables cost-efficient access to substrates for SuFEx click chemistry.

3.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474602

RESUMO

Tozadenant (4-hydroxy-N-(4-methoxy-7-morpholinobenzo[d]thiazol-2-yl)-4-methylpiperidine-1-carboxamide) is a highly selective adenosine A2A receptor (A2AR) antagonist and a promising lead structure for the development of A2AR-selective positron emission tomography (PET) probes. Although several 18F-labelled tozadenant derivatives showed favorable in vitro properties, recent in vivo PET studies observed poor brain penetration and lower specific binding than anticipated from the in vitro data. While these findings might be attributable to the structural modification associated with 18F-labelling, they could also reflect inherent properties of the parent compound. However, PET studies with radioisotopologues of tozadenant to evaluate its cerebral pharmacokinetics and brain distribution are still lacking. In the present work, we applied N-Boc-O-desmethyltozadenant as a suitable precursor for the preparation of [O-methyl-11C]tozadenant ([11C]tozadenant) by O-methylation with [11C]methyl iodide followed by acidic deprotection. This approach afforded [11C]tozadenant in radiochemical yields of 18 ± 2%, with molar activities of 50-60 GBq/µmol (1300-1600 mCi/µmol) and radiochemical purities of 95 ± 3%. In addition, in vitro autoradiography in pig and rat brain slices demonstrated the expected striatal accumulation pattern and confirmed the A2AR specificity of the radioligand, making it a promising tool for in vivo PET studies on the cerebral pharmacokinetics and brain distribution of tozadenant.


Assuntos
Encéfalo , Receptor A2A de Adenosina , Ratos , Animais , Suínos , Receptor A2A de Adenosina/metabolismo , Encéfalo/metabolismo , Benzotiazóis/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos
4.
Chemistry ; 29(2): e202202965, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36214204

RESUMO

Cu-mediated radiofluorination is a versatile tool for the preparation of 18 F-labeled (hetero)aromatics. In this work, we systematically evaluated a series of complexes and identified several generally applicable mediators for highly efficient radiofluorination of aryl boronic and stannyl substrates. Utilization of these mediators in nBuOH/DMI or DMI significantly improved 18 F-labeling yields despite use of lower precursor amounts. Impressively, application of 2.5 µmol aryl boronic acids was sufficient to achieve 18 F-labeling yields of up to 75 %. The practicality of the novel mediators was demonstrated by efficient production of five PET-tracers and transfer of the method to an automated radiosynthesis module. In addition, (S)-3-[18 F]FPhe and 6-[18 F]FDOPA were prepared in activity yields of 23±1 % and 30±3 % using only 2.5 µmol of the corresponding boronic acid or trimethylstannyl precursor.


Assuntos
Cobre , Radioisótopos de Flúor , Cobre/química , Radioisótopos de Flúor/química , Compostos Radiofarmacêuticos/química , Ácidos Borônicos/química , Tomografia por Emissão de Pósitrons , Radioquímica/métodos
5.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894930

RESUMO

Tryptophan (Trp) is an essential proteinogenic amino acid and metabolic precursor for several signaling molecules that has been implicated in many physiological and pathological processes. Since the two main branches of Trp metabolism-serotonin biosynthesis and kynurenine pathway-are differently affected by a variety of neurological and neoplastic diseases, selective visualization of these pathways is of high clinical relevance. However, while positron emission tomography (PET) with existing probes can be used for non-invasive assessment of total Trp metabolism, optimal imaging agents for pathway-specific PET imaging are still lacking. In this work, we describe the preparation of two 18F-labeled Trp derivatives, NIn-methyl-6-[18F]fluorotryptophan (NIn-Me-6-[18F]FTrp) and 5-hydroxy-7-[18F]fluorotryptophan (5-HO-7-[18F]FTrp). We also report feasible synthetic routes for the preparation of the hitherto unknown boronate radiolabeling precursors and non-radioactive reference compounds. Under optimized conditions, alcohol-enhanced Cu-mediated radiofluorination of the respective precursors afforded NIn-Me-6-[18F]FTrp and 5-HO-7-[18F]FTrp as application-ready solutions in radiochemical yields of 45 ± 7% and 29 ± 4%, respectively. As such, our work provides access to two promising candidate probes for pathway-specific visualization of Trp metabolism in amounts sufficient for their preclinical evaluation.


Assuntos
Tomografia por Emissão de Pósitrons , Triptofano , Triptofano/metabolismo , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Cinurenina , Compostos Radiofarmacêuticos/química
6.
Molecules ; 28(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049661

RESUMO

Gliomas are the most common primary brain tumors in adults. A diffuse infiltrative growth pattern and high resistance to therapy make them largely incurable, but there are significant differences in the prognosis of patients with different subtypes of glioma. Mutations in isocitrate dehydrogenase (IDH) have been recognized as an important biomarker for glioma classification and a potential therapeutic target. However, current clinical methods for detecting mutated IDH (mIDH) require invasive tissue sampling and cannot be used for follow-up examinations or longitudinal studies. PET imaging could be a promising approach for non-invasive assessment of the IDH status in gliomas, owing to the availability of various mIDH-selective inhibitors as potential leads for the development of PET tracers. In the present review, we summarize the rationale for the development of mIDH-selective PET probes, describe their potential applications beyond the assessment of the IDH status and highlight potential challenges that may complicate tracer development. In addition, we compile the major chemical classes of mIDH-selective inhibitors that have been described to date and briefly consider possible strategies for radiolabeling of the most promising candidates. Where available, we also summarize previous studies with radiolabeled analogs of mIDH inhibitors and assess their suitability for PET imaging in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Isocitrato Desidrogenase/genética , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Tomografia por Emissão de Pósitrons , Mutação
7.
Cell Physiol Biochem ; 54(2): 180-194, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32068980

RESUMO

BACKGROUND/AIMS: Still in 1999 the first hints were published for the pharmacoresistant Cav2.3 calcium channel to be involved in the generation of epileptic seizures, as transcripts of alpha1E (Cav2.3) and alpha1G (Cav3.1) are changed in the brain of genetic absence epilepsy rats from Strasbourg (GAERS). Consecutively, the seizure susceptibility of mice lacking Cav2.3 was analyzed in great detail by using 4-aminopyridine, pentylene-tetrazol, N-methyl-D-aspartate and kainic acid to induce experimentally convulsive seizures. Further, γ-hydroxybutyrolactone was used for the induction of non-convulsive absence seizures. For all substances tested, Cav2.3-competent mice differed from their knockout counterparts in the sense that for convulsive seizures the deletion of the pharmacoresistant channel was beneficial for the outcome during experimentally induced seizures [1]. The antiepileptic drug lamotrigine reduces seizure activity in Cav2.3-competent but increases it in Cav2.3-deficient mice. In vivo, Cav2.3 must be under tight control by endogenous trace metal cations (Zn2+ and Cu2+). The dyshomeostasis of either of them, especially of Cu2+, may alter the regulation of Cav2.3 severely and its activity for Ca2+ conductance, and thus may change hippocampal and neocortical signaling to hypo- or hyperexcitation. METHODS: To investigate by telemetric EEG recordings the mechanism of generating hyperexcitation by kainate, mice were tested for their sensitivity of changes in neuronal (intracerebroventricular) concentrations of the trace metal cation Zn2+. As the blood-brain barrier limits the distribution of bioavailable Zn2+ or Cu2+ into the brain, we administered micromolar Zn2+ ions intracerebroventricularly in the presence of 1 mM histidine as carrier and compared the effects on behavior and EEG activity in both genotypes. RESULTS: Kainate seizures are more severe in Cav2.3-competent mice than in KO mice and histidine lessens seizure severity in competent but not in Cav2.3-deficient mice. Surprisingly, Zn2+ plus histidine resembles the kainate only control with more seizure severity in Cav2.3-competent than in deficient mice. CONCLUSION: Cav2.3 represents one important Zn2+-sensitive target, which is useful for modulating convulsive seizures.


Assuntos
Canais de Cálcio Tipo R/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Convulsões/tratamento farmacológico , Zinco/uso terapêutico , Animais , Canais de Cálcio Tipo R/genética , Proteínas de Transporte de Cátions/genética , Eletroencefalografia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Histidina/farmacologia , Íons/química , Ácido Caínico/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Convulsões/induzido quimicamente , Convulsões/patologia , Índice de Gravidade de Doença , Zinco/farmacologia , Ácido gama-Aminobutírico/metabolismo
8.
BMC Ophthalmol ; 20(1): 182, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375703

RESUMO

BACKGROUND: So far, only indirect evidence exists for the pharmacoresistant R-type voltage-gated Ca2+ channel (VGCC) to be involved in transretinal signaling by triggering GABA-release onto ON-bipolar neurons. This release of inhibitory neurotransmitters was deduced from the sensitivity of the b-wave to stimulation by Ni2+, Zn2+ and Cu2+. To further confirm the interpretation of these findings, we compared the effects of Cu2+ application and chelation (using kainic acid, KA) on the neural retina from wildtype and Cav2.3-deficient mice. Furthermore, the immediately effect of KA on the ERG b-wave modulation was assessed. METHODS: Transretinal signaling was recorded as an ERG from the superfused murine retina isolated from wildtype and Cav2.3-deficient mice. RESULTS: In mice, the stimulating effect of 100 nM CuCl2 is absent in the retinae from Cav2.3-deficient mice, but prominent in Cav2.3-competent mice. Application of up to 3 mM tricine does not affect the murine b-wave in both genotypes, most likely because of chelating amino acids present in the murine nutrient solution. Application of 27 µM KA significantly increased the b-wave amplitude in wild type and Cav2.3 (-|-) mice. This effect can most likely be explained by the stimulation of endogenous KA-receptors described in horizontal, OFF-bipolar, amacrine or ganglion cells, which could not be fully blocked in the present study. CONCLUSION: Cu2+-dependent modulation of transretinal signaling only occurs in the murine retina from Cav2.3 competent mice, supporting the ideas derived from previous work in the bovine retina that R-type Ca2+ channels are involved in shaping transretinal responses during light perception.


Assuntos
Cobre/metabolismo , Eletrorretinografia/métodos , Retina/metabolismo , Animais , Canais de Cálcio Tipo R/deficiência , Proteínas de Transporte de Cátions/deficiência , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Estimulação Luminosa , Retina/citologia , Transdução de Sinais
9.
Mol Cell Neurosci ; 96: 35-46, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30877033

RESUMO

Elevated levels of unbound unconjugated bilirubin (UCB) can lead to bilirubin encephalopathy and kernicterus. In spite of a large number of studies demonstrating UCB-induced changes in central neurotransmission, it is still unclear whether these effects involve alterations in the function of specific ion channels. To assess how different UCB concentrations and UCB:albumin (U/A) molar ratios affect neuronal R-type voltage-gated Ca2+ channels, we evaluated their effects on whole-cell currents through recombinant Cav2.3 + ß3 channel complexes and ex-vivo electroretinograms (ERGs) from wildtype and Cav2.3-deficient mice. Our findings show that modestly elevated levels of unbound UCB (U/A = 0.5) produce subtle but significant changes in the voltage-dependence of activation and prepulse inactivation, resulting in a stimulation of currents activated by weak depolarization and inhibition at potentials on the plateau of the activation curve. Saturation of the albumin binding capacity (U/A = 1) produced additional suppression that became significant when albumin was omitted completely and might involve a complete loss of channel function. Acutely administered UCB (U/A = 0.5) has recently been shown to affect transsynaptic signaling in the isolated vertebrate retina. The present report reveals that sustained exposure of the murine retina to UCB significantly suppresses also late responses of the inner retina (b-wave) from wildtype compared to Cav2.3-deficient mice. In addition, recovery during washout was significantly more complete and faster in retinae lacking Cav2.3 channels. Together, these findings show that UCB affects cloned and native Cav2.3 channels at clinically relevant U/A molar ratios and indicate that supersaturation of albumin is not required for modulation but associated with a loss of channel functional that could contribute to chronic neuronal dysfunction.


Assuntos
Bilirrubina/farmacologia , Canais de Cálcio Tipo R/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Retina/efeitos dos fármacos , Potenciais de Ação , Animais , Bilirrubina/toxicidade , Células HEK293 , Humanos , Masculino , Camundongos , Retina/metabolismo , Retina/fisiologia
10.
Molecules ; 25(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585815

RESUMO

M1 muscarinic acetylcholine receptors (mAChRs) are abundant in postsynaptic nerve terminals of all forebrain regions and have been implicated in the cognitive decline associated with Alzheimer's disease and other CNS pathologies. Consequently, major efforts have been spent in the development of subtype-selective positron emission tomography (PET) tracers for mAChRs resulting in the development of several 11C-labeled probes. However, protocols for the preparation of 18F-labeled mAChR-ligands have not been published so far. Here, we describe a straightforward procedure for the preparation of an 18F-labeled M1 mAChR agonist and its corresponding pinacol boronate radiolabeling precursor and the non-radioactive reference compound. The target compounds were prepared from commercially available aryl fluorides and Boc protected 4-aminopiperidine using a convergent reaction protocol. The radiolabeling precursor was prepared by a modification of the Miyaura reaction and labeled via the alcohol-enhanced Cu-mediated radiofluorination. The developed procedure afforded the radiotracer in a non-decay-corrected radiochemical yield of 17 ± 3% (n = 3) and in excellent radiochemical purity (>99%) on a preparative scale. Taken together, we developed a straightforward protocol for the preparation of an 18F-labeled M1 mAChR agonist that is amenable for automation and thus provides an important step towards the routine production of a 18F-labeled M1 selective PET tracer for experimental and diagnostic applications.


Assuntos
Radioisótopos de Flúor/química , Agonistas Muscarínicos/síntese química , Receptores Muscarínicos/metabolismo , Cromatografia Líquida de Alta Pressão , Glicóis/química , Halogenação , Ligantes , Agonistas Muscarínicos/química , Compostos Radiofarmacêuticos/química , Padrões de Referência
11.
Exp Brain Res ; 237(10): 2481-2493, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31321447

RESUMO

Kainic acid (KA)-induced seizures and other experimental models of epilepsy have been proven to be instrumental in identifying novel targets that could be responsible for human icto- and epileptogenesis. We have previously shown that the ablation of pharmacoresistant voltage-gated Ca2+ channels with Cav2.3 as central ion-conducting pore (R-type Ca2+ channel) reduces the sensitivity towards KA-induced epilepsy in mice. In vivo, Cav2.3 channels are thought to be under tight allosteric control by endogenous loosely bound trace metal cations (Zn2+ and Cu2+) that suppress channel gating via a high-affinity trace metal-binding site. Metal dyshomeostasis in the brain, which is a common feature of (KA-induced) seizures, could therefore alter the normal function of Cav2.3 channels and may shift hippocampal and neocortical signaling towards hyperexcitation. To investigate the role of loosely bound metal ions for KA-induced hyperexcitation in vivo, we examined the effects of manipulating brain trace metal homeostasis in mice. To this end, we developed a murine system for intracerebroventricular administration of trace metal ions and/or histidine (His), which can bind Zn2+ and Cu2+ and is involved in their transendothelial transport at the blood-brain barrier. Unexpectedly, our preliminary findings indicate that application of His alone but not in the presence of Zn2+ has substantial beneficial effects on the outcome of KA-induced epilepsy in mice. As such, our results emphasize previous findings on the complex, two-sided role of loosely bound metal ions with regard to neuronal excitation and degeneration under pathophysiological conditions.


Assuntos
Hipocampo/efeitos dos fármacos , Histidina/farmacologia , Íons/metabolismo , Convulsões/tratamento farmacológico , Animais , Modelos Animais de Doenças , Histidina/administração & dosagem , Ácido Caínico/farmacologia , Camundongos Endogâmicos C57BL , Convulsões/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos
12.
J Neurochem ; 147(3): 310-322, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29972687

RESUMO

Kainic acid (KA) is a potent agonist at non-N-methyl-D-aspartate (non-NMDA) ionotropic glutamate receptors and commonly used to induce seizures and excitotoxicity in animal models of human temporal lobe epilepsy. Among other factors, Cav 2.3 voltage-gated calcium channels have been implicated in the pathogenesis of KA-induced seizures. At physiologically relevant concentrations, endogenous trace metal ions (Cu2+ , Zn2+ ) occupy an allosteric binding site on the domain I gating module of these channels and interfere with voltage-dependent gating. Using whole-cell patch-clamp recordings in human embryonic kidney (HEK-293) cells stably transfected with human Cav 2.3d and ß3 -subunits, we identified a novel, glutamate receptor-independent mechanism by which KA can potently sensitize these channels. Our findings demonstrate that KA releases these channels from the tonic inhibition exerted by low nanomolar concentrations of Cu2+ and produces a hyperpolarizing shift in channel voltage-dependence by about 10 mV, thereby reconciling the effects of Cu2+ chelation with tricine. When tricine was used as a surrogate to study the receptor-independent action of KA in electroretinographic recordings from the isolated bovine retina, it selectively suppressed a late b-wave component, which we have previously shown to be enhanced by genetic or pharmacological ablation of Cav 2.3 channels. Although the pathophysiological relevance remains to be firmly established, we speculate that reversal of Cu2+ -induced allosteric suppression, presumably via formation of stable kainate-Cu2+ complexes, could contribute to the receptor-mediated excitatory effects of KA. In addition, we discuss experimental implications for the use of KA in vitro, with particular emphasis on the seemingly high incidence of trace metal contamination in common physiological solutions.


Assuntos
Canais de Cálcio Tipo R/efeitos dos fármacos , Canais de Cálcio Tipo R/metabolismo , Proteínas de Transporte de Cátions/efeitos dos fármacos , Proteínas de Transporte de Cátions/metabolismo , Cobre/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Caínico/farmacologia , Animais , Bovinos , Quelantes/farmacologia , Eletrorretinografia , Glicina/análogos & derivados , Glicina/farmacologia , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Receptores de Glutamato/metabolismo , Retina/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Zinco/farmacologia
13.
Pharmacol Res ; 117: 140-147, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28007571

RESUMO

The pituitary adenylate cyclase-activating polypeptide (PACAP)-27 modulates various biological processes, from the cellular level to function specification. However, the cardiac actions of this neuropeptide are still under intense studies. Using control (+|+) and mice lacking (-|-) either R-type (Cav2.3) or T-type (Cav3.2) Ca2+ channels, we investigated the effects of PACAP-27 on cardiac activity of spontaneously beating isolated perfused hearts. Superfusion of PACAP-27 (20nM) caused a significant increase of baseline heart frequency in Cav2.3(+|+) (156.9±10.8 to 239.4±23.4 bpm; p<0.01) and Cav2.3(-|-) (190.3±26.4 to 270.5±25.8 bpm; p<0.05) hearts. For Cav3.2, the heart rate was significantly increased in Cav3.2(-|-) (133.1±8.5 bpm to 204.6±27.9 bpm; p<0.05) compared to Cav3.2(+|+) hearts (185.7±11.2 bpm to 209.3±22.7 bpm). While the P wave duration and QTc interval were significantly increased in Cav2.3(+|+) and Cav2.3(-|-) hearts following PACAP-27 superfusion, there was no effect in Cav3.2(+|+) and Cav3.2(-|-) hearts. The positive chronotropic effects observed in the four study groups, as well as the effect on P wave duration and QTc interval were abolished in the presence of Ni2+ (50µM) and PACAP-27 (20nM) in hearts from Cav2.3(+|+) and Cav2.3(-|-) mice. In addition to suppressing PACAP's response, Ni2+ also induced conduction disturbances in investigated hearts. In conclusion, the most Ni2+-sensitive Ca2+ channels (R- and T-type) may modulate the PACAP signaling cascade during cardiac excitation in isolated mouse hearts, albeit to a lesser extent than other Ni2+-sensitive targets.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Frequência Cardíaca/efeitos dos fármacos , Coração/efeitos dos fármacos , Níquel/farmacologia , Fragmentos de Peptídeos/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Animais , Arritmias Cardíacas/metabolismo , Canais de Cálcio Tipo T/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/farmacologia
14.
Biochim Biophys Acta ; 1853(5): 953-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25603538

RESUMO

Peptide-hormone secretion is partially triggered by Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) and gene inactivation of Zn2+-sensitive Cav2.3-type VGCCs is associated with disturbed glucose homeostasis in mice. Zn2+ has been implicated in pancreatic islet cell crosstalk and recent findings indicate that sudden cessation of Zn2+ supply during hypoglycemia triggers glucagon secretion in rodents. Here we show that diethyldithiocarbamate (DEDTC), a chelating agent for Zn2+ and other group IIB metal ions, differentially affects blood glucose and serum peptide hormone level in wild-type mice and mice lacking the Cav2.3-subunit. Fasting glucose and glucagon level were significantly higher in Cav2.3-deficient compared to wild-type mice, while DEDTC Zn2+-chelation produced a significant and correlated increase of blood glucose and serum glucagon concentration in wild-type but not Cav2.3-deficient mice. Glucose tolerance tests revealed severe glucose intolerance in Zn2+-depleted Cav2.3-deficient but not vehicle-treated Cav2.3-deficient or Zn2+-depleted wildtype mice. Collectively, these findings indicate that Cav2.3 channels are critically involved in the Zn2+-mediated suppression of glucagon secretion during hyperglycemia. Especially under conditions of Zn2+ deficiency, ablation or dysfunction of Cav2.3 channels may lead to severe disturbances in glucose homeostasis.


Assuntos
Canais de Cálcio Tipo R/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Quelantes/farmacologia , Ditiocarb/farmacologia , Glucagon/metabolismo , Zinco/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Canais de Cálcio Tipo R/deficiência , Proteínas de Transporte de Cátions/deficiência , Jejum/sangue , Feminino , Deleção de Genes , Glucagon/sangue , Teste de Tolerância a Glucose , Células HEK293 , Humanos , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Secreção de Insulina , Ativação do Canal Iônico/efeitos dos fármacos , Íons , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Modelos Biológicos
15.
Eur J Med Chem ; 271: 116380, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38615410

RESUMO

Imaging of the A1 adenosine receptor (A1R) by positron emission tomography (PET) with 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propyl-xanthine ([18F]CPFPX) has been widely used in preclinical and clinical studies. However, this radioligand suffers from rapid peripheral metabolism and subsequent accumulation of radiometabolites in the vascular compartment. In the present work, we prepared four derivatives of CPFPX by replacement of the cyclopentyl group with norbornane moieties. These derivatives were evaluated by competition binding studies, microsomal stability assays and LC-MS analysis of microsomal metabolites. In addition, the 18F-labeled isotopologue of 8-(1-norbornyl)-3-(3-fluoropropyl)-1-propylxanthine (1-NBX) as the most promising candidate was prepared by radiofluorination of the corresponding tosylate precursor and the resulting radioligand ([18F]1-NBX) was evaluated by permeability assays with Caco-2 cells and in vitro autoradiography in rat brain slices. Our results demonstrate that 1-NBX exhibits significantly improved A1R affinity and selectivity when compared to CPFPX and that it does not give rise to lipophilic metabolites expected to cross the blood-brain-barrier in microsomal assays. Furthermore, [18F]1-NBX showed a high passive permeability (Pc = 6.9 ± 2.9 × 10-5 cm/s) and in vitro autoradiography with this radioligand resulted in a distribution pattern matching A1R expression in the brain. Moreover, a low degree of non-specific binding (5%) was observed. Taken together, these findings identify [18F]1-NBX as a promising candidate for further preclinical evaluation as potential PET tracer for A1R imaging.


Assuntos
Tomografia por Emissão de Pósitrons , Receptor A1 de Adenosina , Xantinas , Receptor A1 de Adenosina/metabolismo , Humanos , Animais , Xantinas/química , Xantinas/síntese química , Ratos , Células CACO-2 , Masculino , Estrutura Molecular , Relação Estrutura-Atividade , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Relação Dose-Resposta a Droga , Radioisótopos de Flúor/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-37634390

RESUMO

Accurate assessment of isolated radiochemical yields (RCYs) is a prerequisite for efficient and reliable optimization of labeling reactions. In practice, radiochemical conversions (RCCs) determined by HPLC analysis of crude reaction mixtures are often used to estimate RCYs. However, incomplete recovery of radioactivity from the stationary phase can lead to significant inaccuracies if RCCs are calculated based on the activity eluted from the column (i.e. the summed integrals of all peaks). Here, we validate a simple and practical method that overcomes problems associated with retention of activity on the column by determination of the total activity in the sample using post-column injection. Post-column injections were carried out using an additional injection valve, which was placed between the outlet of the HPLC column and the inlet of the detectors. 2-[18F]Fluoropyridine ([18F]FPy) and 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propylxanthine ([18F]CPFPX) were prepared with radiochemical purities of > 99.8% and mixed with [18F]fluoride at a ratio of 1:1 to simulate reaction mixtures obtained by radiolabeling reactions with an RCC of 50%. The samples were analyzed on three different C18 HPLC columns using neutral and acidic mobile phases. RCCs determined using the summed area of all peaks in the chromatograms were compared with those determined using post-column injection. Additionally, RCCs determined by post-column injection were corrected for activity losses before, during and after radiosyntheses to afford analytical RCYs, which were compared with isolated RCYs. Determination of RCCs based on the summed area of all peaks gave correct results under certain chromatographic conditions, but led to overestimation of the actual RCCs by up to 50% in other cases. In contrast, determination of RCCs using post-column injection provided precise results in all cases, and often significantly reduced analysis time. Moreover, analytical RCYs calculated from RCCs determined by post-column injection showed excellent agreement with isolated RCYs (<3% deviation). In conclusion, HPLC analysis using post-column injection enables reliable determination of RCCs independent of the chromatographic conditions and, together with a simple activity balance, rapid and accurate prediction of isolated RCYs.


Assuntos
Fluoretos , Compostos Radiofarmacêuticos , Cromatografia Líquida de Alta Pressão
17.
J Med Chem ; 66(17): 12629-12644, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37625106

RESUMO

18F-Fluorination of sensitive molecules is often challenging, but can be accomplished under suitably mild conditions using radiofluorinated prosthetic groups (PGs). Herein, 1-alkylamino-7-[18F]fluoro-8-azaisatoic anhydrides ([18F]AFAs) are introduced as versatile 18F-labeled building blocks that can be used as amine-reactive or "click chemistry" PGs. [18F]AFAs were efficiently prepared within 15 min by "on cartridge" radiolabeling of readily accessible trimethylammonium precursors. Conjugation with a range of amines afforded the corresponding 2-alkylamino-6-[18F]fluoronicotinamides in radiochemical conversions (RCCs) of 15-98%. In addition, radiolabeling of alkyne- or azide-functionalized precursors with azidopropyl- or propargyl-substituted [18F]AFAs using Cu-catalyzed click cycloaddition afforded the corresponding conjugates in RCCs of 44-88%. The practical utility of the PGs was confirmed by the preparation of three 18F-labeled PSMA ligands in radiochemical yields of 28-42%. Biological evaluation in rats demonstrated excellent in vivo stability of all three conjugates. In addition, one conjugate ([18F]JK-PSMA-15) showed favorable imaging properties for high-contrast visualization of small PSMA-positive lesions.


Assuntos
Alcinos , Compostos Radiofarmacêuticos , Animais , Ratos , Aminas , Anidridos , Tomografia por Emissão de Pósitrons , Radioisótopos de Flúor/química
18.
Eur J Med Chem ; 237: 114383, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35447431

RESUMO

Recently, a protocol for radiolabeling of aryl fluorosulfates ("SuFEx click radiolabeling") using ultrafast 18F/19F isotopic exchange has been reported. Although promising, the original procedure turned out to be rather inefficient. However, systematic optimization of the reaction parameters allowed for development of a robust method for SuFEx radiolabeling which obviates the need for azeotropic drying, base addition and HPLC purification. The developed protocol enabled efficient 18F-fluorination of low nanomolar amounts of aryl fluorosulfates in highly diluted solution (micromolar concentrations). It was successfully used to prepare a series of 29 18F-fluorosulfurylated phenols - including modified ezetimibe, α-tocopherol and etoposide, the two tyrosine derivatives Boc-Tyr([18F]FS)-OMe and H-Tyr([18F]FS)-OMe, the FAP-specific ligand [18F]FS-UAMC1110, and the DPA-714 analog [18F]FS-DPA - in fair to excellent yields. Preliminary evaluation demonstrated sufficient in vivo stability of radiofluorinated electron rich or neutral {Boc-Tyr([18F]FS)-OMe), H-Tyr([18F]FS)-OMe and [18F]FS-DPA} aryl fluorosulfates. Furthermore, [18F]FS-DPA was identified as a promising tracer for visualization of TSPO expression.


Assuntos
Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Radioisótopos de Flúor/metabolismo , Radioisótopos de Flúor/farmacologia , Halogenação , Ligantes , Nanoestruturas , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/farmacologia
19.
iScience ; 25(7): 104577, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35789849

RESUMO

Exposure to outer space microgravity poses a risk for the development of various pathologies including cardiovascular disease. To study this, we derived cardiomyocytes (CMs) from human-induced pluripotent stem cells and exposed them to simulated microgravity (SMG). We combined different "omics" and chromosome conformation capture technologies with live-cell imaging of various transgenic lines to discover that SMG impacts on the contractile velocity and function of CMs via the induction of senescence processes. This is linked to SMG-induced changes of reactive oxygen species (ROS) generation and energy metabolism by mitochondria. Taken together, we uncover a microgravity-controlled axis causing contractile dysfunctions to CMs. Our findings can contribute to the design of preventive and therapeutic strategies against senescence-associated disease.

20.
Front Neurol ; 13: 1066724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712451

RESUMO

Objective: Inflammation is increasingly recognized to be involved in the pathophysiology of aneurysmal subarachnoid hemorrhage (aSAH) and may increase the susceptibility to delayed cerebral ischemia (DCI). Macrophage migration inhibitory factor (MIF) has been shown to be elevated in serum and cerebrospinal fluid (CSF) after aSAH. Here, we determined MIF levels in serum, CSF and cerebral microdialysate (MD) at different time-points after aSAH and evaluated their clinical implications. Methods: MIF levels were measured in serum, CSF and MD obtained from 30 aSAH patients during early (EPd1-4), critical (CPd5-15) and late (LPd16-21) phase after hemorrhage. For subgroup analyses, patients were stratified based on demographic and clinical data. Results: MIF levels in serum increased during CPd5-15 and decreased again during LPd16-21, while CSF levels showed little changes over time. MD levels peaked during EPd1-4, decreased during CPd5-15 and increased again during LPd16-21. Subgroup analyses revealed significantly higher serum levels in patients with aneurysms located in the anterior vs. posterior circulation during CPd5-15 (17.3 [15.1-21.1] vs. 10.0 [8.4-11.5] ng/ml, p = 0.009) and in patients with DCI vs. no DCI during CPd5-15 (17.9 [15.1-22.7] vs. 11.9 [8.9-15.9] ng/ml, p = 0.026) and LPd16-21 (17.4 [11.7-27.9] vs. 11.3 [9.2-12.2] ng/ml, p = 0.021). In addition, MIF levels in MD during CPd5-15 were significantly higher in patients with DCI vs. no DCI (3.6 [1.8-10.7] vs. 0.2 [0.1-0.7] ng/ml, p = 0.026), while CSF levels during the whole observation period were similar in all subgroups. Conclusion: Our findings in a small cohort of aSAH patients provide preliminary data on systemic, global cerebral and local cerebral MIF levels after aSAH and their clinical implications. Clinical trial registration: ClinicalTrials.gov, identifier: NCT02142166.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA