Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nano Lett ; 22(7): 2595-2602, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35235321

RESUMO

The integration of semiconductor Josephson junctions (JJs) in superconducting quantum circuits provides a versatile platform for hybrid qubits and offers a powerful way to probe exotic quasiparticle excitations. Recent proposals for using circuit quantum electrodynamics (cQED) to detect topological superconductivity motivate the integration of novel topological materials in such circuits. Here, we report on the realization of superconducting transmon qubits implemented with (Bi0.06Sb0.94)2Te3 topological insulator (TI) JJs using ultrahigh vacuum fabrication techniques. Microwave losses on our substrates, which host monolithically integrated hardmasks used for the selective area growth of TI nanostructures, imply microsecond limits to relaxation times and, thus, their compatibility with strong-coupling cQED. We use the cavity-qubit interaction to show that the Josephson energy of TI-based transmons scales with their JJ dimensions and demonstrate qubit control as well as temporal quantum coherence. Our results pave the way for advanced investigations of topological materials in both novel Josephson and topological qubits.

2.
Nanomaterials (Basel) ; 13(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513154

RESUMO

Over the past three decades, the growth of Bi thin films has been extensively explored due to their potential applications in various fields such as thermoelectrics, ferroelectrics, and recently for topological and neuromorphic applications, too. Despite significant research efforts in these areas, achieving reliable and controllable growth of high-quality Bi thin-film allotropes has remained a challenge. Previous studies have reported the growth of trigonal and orthorhombic phases on various substrates yielding low-quality epilayers characterized by surface morphology. In this study, we present a systematic growth investigation, enabling the high-quality growth of Bi epilayers on Bi-terminated Si (111) 1 × 1 surfaces using molecular beam epitaxy. Our work yields a phase map that demonstrates the realization of trigonal, orthorhombic, and pseudocubic thin-film allotropes of Bi. In-depth characterization through X-ray diffraction (XRD) techniques and scanning transmission electron microscopy (STEM) analysis provides a comprehensive understanding of phase segregation, phase stability, phase transformation, and phase-dependent thickness limitations in various Bi thin-film allotropes. Our study provides recipes for the realization of high-quality Bi thin films with desired phases, offering opportunities for the scalable refinement of Bi into quantum and neuromorphic devices and for revisiting technological proposals for this versatile material platform from the past 30 years.

3.
Photochem Photobiol Sci ; 11(12): 1914-28, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22945663

RESUMO

The solvatochromic emission properties of five naphthoylurea derivatives with different substitution patterns at the naphthoylurea functionality were investigated, with a particular focus on the influence of inter- and intramolecular H-bonding interactions. The bathochromic shifts of the emission maxima correlate well with the acceptor number or Catalán's acidity of the solvent (Δλ = 47-86 nm), indicating an excited species with a pronounced negative charge that is stabilized by H-bond donating (HBD) solvents. In media with restricted free volume the formation of the charged species is not favored, because the required conformational change to establish an intramolecular charge transfer (ICT) between the fluorophore and the acylurea substituent is hindered, and the emission mainly originates from the locally excited state. This relationship between the alignment of the naphthoyl carbonyl functionality relative to the naphthyl ring and the spectroscopic shift was confirmed by the comparison of the ground state conformation and the emission spectra of the naphthoylurea derivatives in the solid state. Time-resolved experiments revealed different excited entities, whose lifetimes are significantly influenced by the HBD properties and the temperature of the environment. With few exceptions the naphthoylurea derivatives exhibit only two emissive species in the nanosecond range. All experimental data point to conformational relaxation and solvent reorganization leading to the cis and trans isomers of one preferential conformer with respect to the acylurea unit. The structure of the preferred conformation is mainly determined by the possible inter- or intramolecular H-bonds and is therefore also strongly influenced by the HBD and H-bond accepting (HBA) properties of the polar solvents. As the NH groups of the acylurea functionality contribute mainly to the entire inter- and intramolecular H-bond arrangement the variation of the substitution pattern of the urea unit, specifically the presence and position of the NH groups, leads to derivatives with significantly different steady-state and time-resolved emission properties.


Assuntos
Solventes/química , Ureia/análogos & derivados , Cristalografia por Raios X , Ligação de Hidrogênio , Conformação Molecular , Espectrometria de Fluorescência , Temperatura , Ureia/síntese química , Viscosidade
4.
Sci Adv ; 7(26)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34162537

RESUMO

In Josephson junctions, a supercurrent across a nonsuperconducting weak link is carried by electron-hole bound states. Because of the helical spin texture of nondegenerate topological surface states, gapless bound states are established in junctions with topological weak link. These have a characteristic 4π-periodic current phase relation (CΦR) that leads to twice the conventional Shapiro step separation voltage in radio frequency-dependent measurements. In this context, we identify an attenuated first Shapiro step in (Bi0.06Sb0.94)2Te3 (BST) Josephson junctions with AlO x capping layer. We further investigate junctions on narrow, selectively deposited BST nanoribbons, where surface charges are confined to the perimeter of the nanoribbon. Within these junctions, previously identified signatures of gapless bound states are absent. Because of confinement, transverse momentum sub-bands are quantized and a topological gap opening is observed. Surface states within these quantized sub-bands are spin degenerate, which evokes bound states of conventional 2π-periodic CΦR within the BST nanoribbon weak link.

5.
Chemistry ; 16(7): 2198-206, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20066696

RESUMO

Crystal chemical data of high- (HT) and low-temperature (LT) modifications of lithium argyrodites with the compositions Li(7)PCh(6) (Ch=S, Se), Li(6)PCh(5)X (X=Cl, Br, I), Li(6)AsS(5)Br, and Li(6)AsCh(5)I (Ch=S, Se) based on single-crystal, powder X-ray (113 K

6.
RSC Adv ; 10(23): 13737-13748, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35492970

RESUMO

Tantalum oxide is ubiquitous in everyday life, from capacitors in electronics to ion conductors for electrochromic windows and electrochemical storage devices. Investigations into sol-gel deposition of tantalum oxide, and its sister niobium oxide, has accelerated since the 1980s and continues to this day. The aim of this study is to synthesize a near UV sensitive, air stable, and low toxicity tantalum sol-gel precursor solution for metal oxide thin films - these attributes promise to reduce manufacturing costs and allow for facile mass production. By utilizing 1D and 2D nuclear magnetic resonance, this study shows that by removing ethanol from the precursor solution at a relatively low temperature and pressure, decomposition of the photosensitive complex can be minimized while obtaining a precursor solution with sufficient stability for storage and processing in the atmosphere. The solution described herein is further modified for inkjet printing, where multiple material characterization techniques demonstrate that the solution can be utilized in low temperature, photochemical solution deposition of tantalum oxide, which is likely amorphous. Tested substrates include amorphous silica, crystalline silicon wafer, and gold/titanium/PET foil. The hope is that these results may spark future investigations into electronic, optical, and biomedical device fabrication with tantalum oxide, and potentially niobium oxide, based films using the proposed synthesis method.

8.
J Biomed Mater Res A ; 106(6): 1634-1645, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29427541

RESUMO

Three dimensional, nanostructured surfaces have attracted considerable attention in biomedical research since they have proven to represent a powerful platform to influence cell fate. In particular, nanorods and nanopillars possess great potential for the control of cell adhesion and differentiation, gene and biomolecule delivery, optical and electrical stimulation and recording, as well as cell patterning. Here, we investigate the influence of asymmetric poly(dichloro-p-xylene) (PPX) columnar films on the adhesion and maturation of cortical neurons. We show that nanostructured films with dense, inclined polymer columns can support viable primary neuronal culture. The cell-nanostructure interface is characterized showing a minimal cell penetration but strong adhesion on the surface. Moreover, we quantify the influence of the nano-textured surface on the neural development (soma size, neuritogenesis, and polarity) in comparison to a planar PPX sample. We demonstrate that the nanostructures facilitates an enhancement in neurite branching as well as elongation of axons and growth cones. Furthermore, we show for the first time that the asymmetric orientation of polymeric nanocolumns strongly influences the initiation direction of the axon formation. These results evidence that 3D nano-topographies can significantly change neural development and can be used to engineer axon elongation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1634-1645, 2018.


Assuntos
Materiais Biocompatíveis/química , Polaridade Celular , Sobrevivência Celular , Nanoestruturas/química , Neurônios/citologia , Polímeros/química , Xilenos/química , Animais , Adesão Celular , Células Cultivadas , Halogenação , Nanoestruturas/ultraestrutura , Neurogênese , Ratos Wistar , Propriedades de Superfície
9.
ACS Appl Mater Interfaces ; 9(9): 8371-8377, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28234444

RESUMO

The lattice mismatch between CdSe and ZnSe is known to limit the thickness of ZnSe/CdSe quantum wells on GaAs (001) substrates to about 2-3 monolayers. We demonstrate that this thickness can be enhanced significantly by using In0.12Ga0.88As pseudo substrates, which generate alternating tensile and compressive strains in the ZnSe/CdSe/ZnSe layers resulting in an efficient strain compensation. This method enables to design CdSe/ZnSe quantum wells with CdSe thicknesses ranging from 1 to 6 monolayers, covering the whole visible spectrum. The strain compensation effect is investigated by high resolution transmission electron microscopy and supported by molecular statics simulations. The model approach with the supporting experimental measurements is sufficiently general to be also applied to other highly mismatched material combinations for the design of advanced strained heterostructures.

10.
Nanoscale ; 9(43): 16735-16741, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29068026

RESUMO

We report the in situ growth of crystalline aluminum (Al) and niobium (Nb) shells on indium arsenide (InAs) nanowires. The nanowires are grown on Si(111) substrates by molecular beam epitaxy (MBE) without foreign catalysts in the vapor-solid (VS) mode. The metal shells are deposited by electron-beam evaporation in a metal MBE. High quality superconductor/semiconductor (SC/SM) hybrid structures such as Al/InAs and Nb/InAs are of interest for ongoing research in the fields of gateable Josephson junctions and quantum information related research. Systematic investigations of the deposition parameters suitable for metal shell growth are conducted. In the case of Al, the substrate temperature, the growth rate and the shell thickness are considered. The substrate temperature as well as the angle of the impinging deposition flux are explored for Nb shells. The core-shell hybrid structures are characterized by electron microscopy and X-ray spectroscopy. Our results show that the substrate temperature is a crucial parameter in enabling the deposition of smooth Al layers. Contrarily, Nb films are less dependent on substrate temperature but are strongly affected by the deposition angle. At a temperature of 200 °C Nb reacts with InAs, dissolving the nanowire crystal. Our investigations result in smooth metal shells exhibiting an impurity and defect free, crystalline SC/InAs interface. Additionally, we find that the SC crystal structure is not affected by stacking faults present in the InAs nanowires.

11.
Nat Commun ; 8: 14976, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28429708

RESUMO

New three-dimensional (3D) topological phases can emerge in superlattices containing constituents of known two-dimensional topologies. Here we demonstrate that stoichiometric Bi1Te1, which is a natural superlattice of alternating two Bi2Te3 quintuple layers and one Bi bilayer, is a dual 3D topological insulator where a weak topological insulator phase and topological crystalline insulator phase appear simultaneously. By density functional theory, we find indices (0;001) and a non-zero mirror Chern number. We have synthesized Bi1Te1 by molecular beam epitaxy and found evidence for its topological crystalline and weak topological character by spin- and angle-resolved photoemission spectroscopy. The dual topology opens the possibility to gap the differently protected metallic surface states on different surfaces independently by breaking the respective symmetries, for example, by magnetic field on one surface and by strain on another surface.

12.
Nat Commun ; 6: 8816, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26572278

RESUMO

Three-dimensional (3D) topological insulators are a new state of quantum matter, which exhibits both a bulk band structure with an insulating energy gap as well as metallic spin-polarized Dirac fermion states when interfaced with a topologically trivial material. There have been various attempts to tune the Dirac point to a desired energetic position for exploring its unusual quantum properties. Here we show a direct experimental proof by angle-resolved photoemission of the realization of a vertical topological p-n junction made of a heterostructure of two different binary 3D TI materials Bi2Te3 and Sb2Te3 epitaxially grown on Si(111). We demonstrate that the chemical potential is tunable by about 200 meV when decreasing the upper Sb2Te3 layer thickness from 25 to 6 quintuple layers without applying any external bias. These results make it realistic to observe the topological exciton condensate and pave the way for exploring other exotic quantum phenomena in the near future.

13.
ACS Nano ; 8(7): 6713-23, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24963873

RESUMO

An in-depth understanding of the interface between cells and nanostructures is one of the key challenges for coupling electrically excitable cells and electronic devices. Recently, various 3D nanostructures have been introduced to stimulate and record electrical signals emanating from inside of the cell. Even though such approaches are highly sensitive and scalable, it remains an open question how cells couple to 3D structures, in particular how the engulfment-like processes of nanostructures work. Here, we present a profound study of the cell interface with two widely used nanostructure types, cylindrical pillars with and without a cap. While basic functionality was shown for these approaches before, a systematic investigation linking experimental data with membrane properties was not presented so far. The combination of electron microscopy investigations with a theoretical membrane deformation model allows us to predict the optimal shape and dimensions of 3D nanostructures for cell-chip coupling.


Assuntos
Nanotecnologia/instrumentação , Linhagem Celular , Membrana Celular , Eletrodos , Nanoestruturas
14.
J Org Chem ; 73(8): 3005-16, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18355077

RESUMO

Mechanistic details of the thermal C2-C6 cyclization of enyne-carbodiimides are investigated. A variety of product and kinetic studies on solvent and substituent effects open the way for a deeper mechanistic understanding. Nonlinear Hammett correlations suggest that a change of mechanism takes place: the thermal C2-C6 cyclization of enyne-carbodiimides with electron-withdrawing substituents may be best described as a coarctate cyclization to a carbene and with electron-donating substituents as a polar cyclization to a carbene with strong zwitterionic character. Theoretical investigations had originally suggested a diradical intermediate. DFT computations and NBO analysis for the parent diazafulvenediyl are in agreement with a carbene intermediate. While any intermolecular trapping of the intermediate failed, the formation of the C-H insertion product 19 strongly supports the carbene hypothesis.


Assuntos
Carbodi-Imidas/química , Carbono/química , Metano/análogos & derivados , Temperatura , Alcadienos/química , Aminação , Cristalografia por Raios X , Ciclização , Radicais Livres/química , Espectroscopia de Ressonância Magnética , Metano/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA