RESUMO
Nanocrystals based on halide perovskites offer a promising material platform for highly efficient lighting. Using transient optical spectroscopy, we study excitation recombination dynamics in manganese-doped CsPb(Cl,Br)3 perovskite nanocrystals. We find an increase in the intrinsic excitonic radiative recombination rate upon doping, which is typically a challenging material property to tailor. Supported by ab initio calculations, we can attribute the enhanced emission rates to increased charge carrier localization through lattice periodicity breaking from Mn dopants, which increases the overlap of electron and hole wave functions locally and thus the oscillator strength of excitons in their vicinity. Our report of a fundamental strategy for improving luminescence efficiencies in perovskite nanocrystals will be valuable for maximizing efficiencies in light-emitting applications.
RESUMO
Spin-orbit coupling in the electronic states of solution-processed hybrid metal halide perovskites forms complex spin-textures in the band structures and allows for optical manipulation of the excited state spin-polarizations. Here, we report that motional narrowing acts on the photoexcited spin-polarization in CH3NH3PbBr3 thin films, which are doped at percentage-level with Mn2+ ions. Using ultrafast circularly polarized broadband transient absorption spectroscopy at cryogenic temperatures, we investigate the spin population dynamics in these doped hybrid perovskites and find that spin relaxation lifetimes are increased by a factor of 3 compared to those of undoped materials. Using quantitative analysis of the photoexcitation cooling processes, we reveal increased carrier scattering rates in the doped perovskites as the fundamental mechanism driving spin-polarization-maintaining motional narrowing. Our work reports transition-metal doping as a concept to extend spin lifetimes of hybrid perovskites.
RESUMO
One of the open challenges of spintronics is to control the spin relaxation mechanisms. Layered metal-halide perovskites are an emerging class of semiconductors which possess a soft crystal lattice that strongly couples electronic and vibrational states and show promise for spintronic applications. Here, we investigate the impact of such strong coupling on the spin relaxation of excitons in the layered perovskite BA2FAPbI7 using a combination of cryogenic Faraday rotation and transient absorption spectroscopy. We report an unexpected increase of the spin lifetime by two orders of magnitude at 77 K under photoexcitation with photon energy in excess of the exciton absorption peak, and thus demonstrate optical control over the dominant spin relaxation mechanism. We attribute this control to strong coupling between excitons and optically excited phonons, which form polaronic states with reduced electron-hole wave function overlap that protect the exciton spin memory. Our insights highlight the special role of exciton-lattice interactions on the spin physics in the layered perovskites and provide a novel opportunity for optical spin control.
RESUMO
The nature of photoexcitations in Ruddlesden-Popper (RP) hybrid metal halide perovskites is still under debate. While the high exciton binding energy in the hundreds of millielectronvolts indicates excitons as the primary photoexcitations, recent reports found evidence for dark, Coulombically screened populations, which form via strong coupling of excitons and the atomic lattice. Here, we use time-resolved mid-infrared spectroscopy to gain insights into the nature and recombination of such dark excited states in (BA)2(MA)n-1PbnI3n+1 (n = 1,2,3) via their intraband electronic absorption. In stark contrast to results in the bulk perovskites, all samples exhibit a broad, unstructured mid-IR photoinduced absorbance with no infrared activated modes, independent of excitonic confinement. Further, the recombination dynamics are dominated by a bimolecular process. In combination with steady-state photoluminescence experiments, we conclude that screened, dark photoexcitations act as a population reservoir in the RP hybrid perovskites, from which nongeminate formation of bright excitons precedes generation of photoluminescence.
RESUMO
Band gap tuning of hybrid metal-halide perovskites by halide substitution holds promise for tailored light absorption in tandem solar cells and emission in light-emitting diodes. However, the impact of halide substitution on the crystal structure and the fundamental mechanism of photo-induced halide segregation remain open questions. Here, using a combination of temperature-dependent X-ray diffraction and calorimetry measurements, we report the emergence of a disorder- and frustration-driven orientational glass for a wide range of compositions in CH3NH3Pb(Cl x Br1-x )3. Using temperature-dependent photoluminescence measurements, we find a correlation between halide segregation under illumination and local strains from the orientational glass. We observe no glassy behavior in CsPb(Cl x Br1-x )3, highlighting the importance of the A-site cation for the structure and optoelectronic properties. Using first-principles calculations, we identify the local preferential alignment of the organic cations as the glass formation mechanism. Our findings rationalize the superior photostability of mixed-cation metal-halide perovskites and provide guidelines for further stabilization strategies.
RESUMO
Materials combining semiconductor functionalities with spin control are desired for the advancement of quantum technologies. Here, we study the magneto-optical properties of novel paramagnetic Ruddlesden-Popper hybrid perovskites Mn:(PEA)2PbI4 (PEA = phenethylammonium) and report magnetically brightened excitonic luminescence with strong circular polarization from the interaction with isolated Mn2+ ions. Using a combination of superconducting quantum interference device (SQUID) magnetometry, magneto-absorption and transient optical spectroscopy, we find that a dark exciton population is brightened by state mixing with the bright excitons in the presence of a magnetic field. Unexpectedly, the circular polarization of the dark exciton luminescence follows the Brillouin-shaped magnetization with a saturation polarization of 13% at 4 K and 6 T. From high-field transient magneto-luminescence we attribute our observations to spin-dependent exciton dynamics at early times after excitation, with first indications for a Mn-mediated spin-flip process. Our findings demonstrate manganese doping as a powerful approach to control excitonic spin physics in Ruddlesden-Popper perovskites, which will stimulate research on this highly tuneable material platform with promise for tailored interactions between magnetic moments and excitonic states.
RESUMO
The economically efficient utilization of NAD(P)H-dependent enzymes requires the regeneration of consumed reduction equivalents. Classically, this is done by substrate supplementation, and if necessary by addition of one or more enzymes. The simplest method thereof is whole cell NADPH regeneration. In this context we now present an easy-to-apply whole cell cofactor regeneration approach, which can especially be used in screening applications. Simply by applying citrate to a buffer or directly using citrate/-phosphate buffer NADPH can be regenerated by native enzymes of the TCA cycle, practically present in all aerobic living organisms. Apart from viable-culturable cells, this regeneration approach can also be applied with lyophilized cells and even crude cell extracts. This is exemplarily shown for the synthesis of 1-phenylethanol from acetophenone with several oxidoreductases. The mechanism of NADPH regeneration by TCA cycle enzymes was further investigated by a transient isotopic labeling experiment feeding [1,5-13C]citrate. This revealed that the regeneration mechanism can further be optimized by genetic modification of two competing internal citrate metabolism pathways, the glyoxylate shunt, and the glutamate dehydrogenase.
RESUMO
Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.