Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pest Manag Sci ; 78(7): 3005-3011, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35420734

RESUMO

BACKGROUND: Pest insects are often baited with poisoned feeding stimulants, the most common of which are sugars. However, sugars are attractive for most animal species, which makes it difficult to target only a specific pest insect species. Here, we assessed different sugar alcohols for their potential as more species-selective feeding stimulants for pest insects. RESULTS: We tested the attractiveness of the sugar alcohols sorbitol, xylitol and erythritol with a capillary feeder assay in wasps (as potential pest insects, because introduced wasps are a pest in many regions) and bees (as non-target insects). For the common wasp (Vespula vulgaris), sorbitol and xylitol acted as nutritive feeding stimulants, and erythritol acted as a non-nutritive feeding stimulant. For the buff-tailed bumble bee (Bombus terrestris), sorbitol acted as a feeding stimulant, while for the honey bee (Apis mellifera), none of the sugar alcohols acted as feeding stimulant. CONCLUSION: The species-specific preferences for sugar alcohols suggest their potential as species-selective insect baits. The wasp-specific preference for xylitol suggests its potential as a bee-safe alternative to sugar-containing bait for controlling the common wasp. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Vespas , Animais , Abelhas , Eritritol/farmacologia , Sorbitol , Álcoois Açúcares/farmacologia , Açúcares , Xilitol
2.
Science ; 376(6597): 1122-1126, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35653462

RESUMO

Insects are facing a multitude of anthropogenic stressors, and the recent decline in their biodiversity is threatening ecosystems and economies across the globe. We investigated the impact of glyphosate, the most commonly used herbicide worldwide, on bumblebees. Bumblebee colonies maintain their brood at high temperatures via active thermogenesis, a prerequisite for colony growth and reproduction. Using a within-colony comparative approach to examine the effects of long-term glyphosate exposure on both individual and collective thermoregulation, we found that whereas effects are weak at the level of the individual, the collective ability to maintain the necessary high brood temperatures is decreased by more than 25% during periods of resource limitation. For pollinators in our heavily stressed ecosystems, glyphosate exposure carries hidden costs that have so far been largely overlooked.


Assuntos
Abelhas , Regulação da Temperatura Corporal , Exposição Ambiental , Glicina/análogos & derivados , Herbicidas , Animais , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Ecossistema , Glicina/toxicidade , Herbicidas/toxicidade , Glifosato
3.
BMC Ecol Evol ; 22(1): 50, 2022 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-35429979

RESUMO

BACKGROUND: Insects have exceptionally fast smelling capabilities, and some can track the temporal structure of odour plumes at rates above 100 Hz. It has been hypothesized that this fast smelling capability is an adaptation for flying. We test this hypothesis by comparing the olfactory acuity of sympatric flighted versus flightless lineages within a wing-polymorphic stonefly species. RESULTS: Our analyses of olfactory receptor neuron responses reveal that recently-evolved flightless lineages have reduced olfactory acuity. By comparing flighted versus flightless ecotypes with similar genetic backgrounds, we eliminate other confounding factors that might have affected the evolution of their olfactory reception mechanisms. Our detection of different patterns of reduced olfactory response strength and speed in independently wing-reduced lineages suggests parallel evolution of reduced olfactory acuity. CONCLUSIONS: These reductions in olfactory acuity echo the rapid reduction of wings themselves, and represent an olfactory parallel to the convergent phenotypic shifts seen under selective gradients in other sensory systems (e.g. parallel loss of vision in cave fauna). Our study provides evidence for the hypothesis that flight poses a selective pressure on the speed and strength of olfactory receptor neuron responses and emphasizes the energetic costs of rapid olfaction.


Assuntos
Insetos , Asas de Animais , Animais , Cavernas , Ecótipo , Insetos/genética , Olfato/fisiologia , Asas de Animais/fisiologia
4.
Front Behav Neurosci ; 12: 191, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210320

RESUMO

Colony coherence is essential for eusocial insects because it supports the inclusive fitness of colony members. Ants quickly and reliably recognize who belongs to the colony (nestmates) and who is an outsider (non-nestmates) based on chemical recognition cues (cuticular hydrocarbons: CHCs) which as a whole constitute a chemical label. The process of nestmate recognition often is described as matching a neural template with the label. In this study, we tested the prevailing view that ants use commonalities in the colony odor that are present in the CHC profile of all individuals of a colony or whether different CHC profiles are learned independently. We created and manipulated sub-colonies by adding one or two different hydrocarbons that were not present in the original colony odor of our Camponotus floridanus colony and later tested workers of the sub-colonies in one-on-one encounters for aggressive responses. We found that workers adjust their nestmate recognition by learning novel, manipulated CHC profiles, but still accept workers with the previous CHC profile. Workers from a sub-colony with two additional components showed aggression against workers with only one of the two components added to their CHC profile. Thus, additional components as well as the lack of a component can alter a label as "non-nestmate." Our results suggest that ants have multiple-templates to recognize nestmates carrying distinct labels. This finding is in contrast to what previously has been proposed, i.e., a widening of the acceptance range of one template. We conclude that nestmate recognition in ants is a partitioned (multiple-template) process of the olfactory system that allows discrimination and categorization of nestmates by differences in their CHC profiles. Our findings have strong implications for our understanding of the underlying mechanisms of colony coherence and task allocation because they illustrate the importance of individual experience and task associated differences in the CHC profiles that can be instructive for the organization of insect societies.

5.
PLoS One ; 12(9): e0183872, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28910322

RESUMO

Social insects vigorously defend their nests against con- and heterospecific competitors. Collective defense is also seen at highly profitable food sources. Aggressive responses are elicited or promoted by several means of communication, e.g. alarm pheromones and other chemical markings. In this study, we demonstrate that the social environment and interactions among colony members (nestmates) modulates the propensity to engage in aggressive behavior and therefore plays an important role in allocating workers to a defense task. We kept Formica rufa workers in groups or isolated for different time spans and then tested their aggressiveness in one-on-one encounters with other ants. In groups of more than 20 workers that are freely interacting, individuals are aggressive in one-on-one encounters with non-nestmates, whereas aggressiveness of isolated workers decreases with increasing isolation time. We conclude that ants foraging collectively and interacting frequently, e.g. along foraging trails and at profitable food sources, remain in a social context and thereby maintain high aggressiveness against potential competitors. Our results suggest that the nestmate recognition system can be utilized at remote sites for an adaptive and flexible tuning of the response against competitors.


Assuntos
Formigas/fisiologia , Comportamento Animal/fisiologia , Comportamento Social , Animais
7.
PLoS One ; 9(7): e102771, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054203

RESUMO

Organized flight of homing pigeons (Columba livia) was previously shown to rely on simple leadership rules between flock mates, yet the stability of this social structuring over time and across different contexts remains unclear. We quantified the repeatability of leadership-based flock structures within a flight and across multiple flights conducted with the same animals. We compared two contexts of flock composition: flocks of birds of the same age and flight experience; and, flocks of birds of different ages and flight experience. All flocks displayed consistent leadership-based structures over time, showing that individuals have stable roles in the navigational decisions of the flock. However, flocks of balanced age and flight experience exhibited reduced leadership stability, indicating that these factors promote flock structuring. Our study empirically demonstrates that leadership and followership are consistent behaviours in homing pigeon flocks, but such consistency is affected by the heterogeneity of individual flight experiences and/or age. Similar evidence from other species suggests leadership as an important mechanism for coordinated motion in small groups of animals with strong social bonds.


Assuntos
Columbidae/fisiologia , Voo Animal/fisiologia , Hierarquia Social , Comportamento de Retorno ao Território Vital/fisiologia , Orientação/fisiologia , Animais , Predomínio Social , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA