Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Cell ; 171(4): 890-903.e18, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29107329

RESUMO

Eukaryotic cells have evolved extensive protein quality-control mechanisms to remove faulty translation products. Here, we show that yeast cells continually produce faulty mitochondrial polypeptides that stall on the ribosome during translation but are imported into the mitochondria. The cytosolic protein Vms1, together with the E3 ligase Ltn1, protects against the mitochondrial toxicity of these proteins and maintains cell viability under respiratory conditions. In the absence of these factors, stalled polypeptides aggregate after import and sequester critical mitochondrial chaperone and translation machinery. Aggregation depends on C-terminal alanyl/threonyl sequences (CAT-tails) that are attached to stalled polypeptides on 60S ribosomes by Rqc2. Vms1 binds to 60S ribosomes at the mitochondrial surface and antagonizes Rqc2, thereby facilitating import, impeding aggregation, and directing aberrant polypeptides to intra-mitochondrial quality control. Vms1 is a key component of a rescue pathway for ribosome-stalled mitochondrial polypeptides that are inaccessible to ubiquitylation due to coupling of translation and translocation.


Assuntos
Proteínas de Transporte/metabolismo , Mitocôndrias/fisiologia , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Citosol/metabolismo , Transporte de Elétrons , Homeostase , Saccharomyces cerevisiae/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
3.
Annu Rev Biochem ; 81: 1-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22663076

RESUMO

Good fortune let me be an innocent child during World War II, a hopeful adolescent with encouraging parents during the years of German recovery, and a self-determined adult in a period of peace, freedom, and wealth. My luck continued as a scientist who could entirely follow his fancy. My mind was always set on understanding how things are made. At a certain point, I found myself confronted with the question of how mitochondria and organelles, which cannot be formed de novo, are put together. Intracellular transport of proteins, their translocation across the mitochondrial membranes, and their folding and assembly were the processes that fascinated me. Now, after some 30 years, we have wonderful insights, unimagined views of a complex and at the same time simple machinery and its workings. We have glimpses of how orderly processes are established in the cell to assemble from single molecules our beautiful mitochondria that every day make some 50 kg of ATP for each of us. At the same time, we have learned amazing lessons from the tinkering of evolution that developed mitochondria from bacteria.


Assuntos
Biologia Celular/história , Mitocôndrias/metabolismo , Animais , Alemanha , História do Século XX , Mitocôndrias/química , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Dobramento de Proteína , Transporte Proteico , Proteínas/metabolismo
4.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37073556

RESUMO

Mitochondria are essential organelles of eukaryotic cells and are characterized by their unique and complex membrane system. They are confined from the cytosol by an envelope consisting of two membranes. Signals, metabolites, proteins and lipids have to be transferred across these membranes via proteinaceous contact sites to keep mitochondria functional. In the present study, we identified a novel mitochondrial contact site in Saccharomyces cerevisiae that is formed by the inner membrane protein Cqd1 and the outer membrane proteins Por1 and Om14. Similar to what is found for the mitochondrial porin Por1, Cqd1 is highly conserved, suggesting that this complex is conserved in form and function from yeast to human. Cqd1 is a member of the UbiB protein kinase-like family (also called aarF domain-containing kinases). It was recently shown that Cqd1, in cooperation with Cqd2, controls the cellular distribution of coenzyme Q by a yet unknown mechanism. Our data suggest that Cqd1 is additionally involved in phospholipid homeostasis. Moreover, overexpression of CQD1 and CQD2 causes tethering of mitochondria to the endoplasmic reticulum, which might explain the ability of Cqd2 to rescue ERMES deletion phenotypes.


Assuntos
Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
5.
Nature ; 571(7764): E4, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31235950

RESUMO

Change history: In this Letter, the bottom blot in Fig. 2g (for 'IB: Myc') was missing. This has been corrected online.

6.
Nature ; 570(7762): 538-542, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31189955

RESUMO

Ribosome-associated quality control (RQC) provides a rescue pathway for eukaryotic cells to process faulty proteins after translational stalling of cytoplasmic ribosomes1-6. After dissociation of ribosomes, the stalled tRNA-bound peptide remains associated with the 60S subunit and extended by Rqc2 by addition of C-terminal alanyl and threonyl residues (CAT tails)7-9, whereas Vms1 catalyses cleavage and release of the peptidyl-tRNA before or after addition of CAT tails10-12. In doing so, Vms1 counteracts CAT-tailing of nuclear-encoded mitochondrial proteins that otherwise drive aggregation and compromise mitochondrial and cellular homeostasis13. Here we present structural and functional insights into the interaction of Saccharomyces cerevisiae Vms1 with 60S subunits in pre- and post-peptidyl-tRNA cleavage states. Vms1 binds to 60S subunits with its Vms1-like release factor 1 (VLRF1), zinc finger and ankyrin domains. VLRF1 overlaps with the Rqc2 A-tRNA position and interacts with the ribosomal A-site, projecting its catalytic GSQ motif towards the CCA end of the tRNA, its Y285 residue dislodging the tRNA A73 for nucleolytic cleavage. Moreover, in the pre-state, we found the ABCF-type ATPase Arb1 in the ribosomal E-site, which stabilizes the delocalized A73 of the peptidyl-tRNA and stimulates Vms1-dependent tRNA cleavage. Our structural analysis provides mechanistic insights into the interplay of the RQC factors Vms1, Rqc2 and Arb1 and their role in the protection of mitochondria from the aggregation of toxic proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Homeostase , Proteínas Mitocondriais/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/ultraestrutura , Sequência de Aminoácidos , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Modelos Moleculares , Proteoma/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/química , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura
8.
Mol Cell ; 44(2): 191-202, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22017868

RESUMO

The AAA+ family in eukaryotes has many members in various cellular compartments with a role in protein unfolding and degradation. We show that the mitochondrial AAA-ATPase Bcs1 has an unusual function in protein translocation. Bcs1 mediates topogenesis of the Rieske protein, Rip1, a component of respiratory chains in bacteria, mitochondria, and chloroplasts. The oligomeric AAA-ATPase Bcs1 is involved in export of the folded Fe-S domain of Rip1 across the inner membrane and insertion of its transmembrane segment into an assembly intermediate of the cytochrome bc(1) complex, thus revealing an unexpected mechanistical concept of protein translocation across membranes. Furthermore, we describe structural elements of Rip1 required for recognition and export by as well as ATP-dependent lateral release from the AAA-ATPase. In bacteria and chloroplasts Rip1 uses the Tat machinery for topogenesis; however, mitochondria have lost this machinery during evolution and a member of the AAA-ATPase family has taken over its function.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Produtos do Gene tat/genética , Produtos do Gene tat/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Modelos Biológicos , Chaperonas Moleculares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Dobramento de Proteína , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética
9.
Mol Cell ; 38(1): 89-100, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20385092

RESUMO

Heat shock proteins 70 (Hsp70) represent a ubiquitous and conserved family of molecular chaperones involved in a plethora of cellular processes. The dynamics of their ATP hydrolysis-driven and cochaperone-regulated conformational cycle are poorly understood. We used fluorescence spectroscopy to analyze, in real time and at single-molecule resolution, the effects of nucleotides and cochaperones on the conformation of Ssc1, a mitochondrial member of the family. We report that the conformation of its ADP state is unexpectedly heterogeneous, in contrast to a uniform ATP state. Substrates are actively involved in determining the conformation of Ssc1. The J protein Mdj1 does not interact transiently with the chaperone, as generally believed, but rather is released slowly upon ATP hydrolysis. Analysis of the major bacterial Hsp70 revealed important differences between highly homologous members of the family, possibly explaining tuning of Hsp70 chaperones to meet specific functions in different organisms and cellular compartments.


Assuntos
Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Conformação Proteica , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
EMBO J ; 30(16): 3232-41, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21765393

RESUMO

The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Precursores de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
12.
EMBO J ; 30(21): 4356-70, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-22009199

RESUMO

Mitochondria are organelles with a complex architecture. They are bounded by an envelope consisting of the outer membrane and the inner boundary membrane (IBM). Narrow crista junctions (CJs) link the IBM to the cristae. OMs and IBMs are firmly connected by contact sites (CS). The molecular nature of the CS remained unknown. Using quantitative high-resolution mass spectrometry we identified a novel complex, the mitochondrial contact site (MICOS) complex, formed by a set of mitochondrial membrane proteins that is essential for the formation of CS. MICOS is preferentially located at the CJs. Upon loss of one of the MICOS subunits, CJs disappear completely or are impaired, showing that CJs require the presence of CS to form a superstructure that links the IBM to the cristae. Loss of MICOS subunits results in loss of respiratory competence and altered inheritance of mitochondrial DNA.


Assuntos
Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Sítios de Ligação/fisiologia , DNA Mitocondrial/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica , Mitocôndrias/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/fisiologia , Modelos Biológicos , Complexos Multiproteicos/química , Complexos Multiproteicos/fisiologia , Organismos Geneticamente Modificados , Ligação Proteica/genética , Ligação Proteica/fisiologia , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
EMBO Rep ; 12(6): 542-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21546912

RESUMO

The TIM23 complex mediates translocation of proteins across, and their lateral insertion into, the mitochondrial inner membrane. Translocation of proteins requires both the membrane-embedded core of the complex and its ATP-dependent import motor. Insertion of some proteins, however, occurs in the absence of ATP, questioning the need for the import motor during lateral insertion. We show here that the import motor associates with laterally inserted proteins even when its ATPase activity is not required. Furthermore, our results suggest a role for the import motor in lateral insertion. Thus, the import motor is involved in ATP-dependent translocation and ATP-independent lateral insertion.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Camundongos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Transporte Proteico/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
J Struct Biol ; 179(2): 121-5, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22575765

RESUMO

The family of AAA+ proteins in eukaryotes has many members in various cellular compartments with a broad spectrum of functions in protein unfolding and degradation. The mitochondrial AAA protein Bcs1 plays an unusual role in protein translocation. It is involved in the topogenesis of the Rieske protein, Rip1, and thereby in the biogenesis of the cytochrome bc(1) complex of the mitochondrial respiratory chain. Bcs1 mediates the export of the folded FeS domain of Rip1 across the mitochondrial inner membrane and the insertion of its transmembrane segment into an assembly intermediate of the cytochrome bc(1) complex. We discuss structural elements of the Bcs1 protein compared to other AAA proteins in an attempt to understand the mechanism of its function. In this context, we discuss human diseases caused by mutations in Bcs1 that lead to different properties of the protein and subsequently to different symptoms.


Assuntos
Transporte de Elétrons/fisiologia , Proteínas Mitocondriais/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Animais , Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia
15.
J Biol Chem ; 286(51): 43809-43815, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21969381

RESUMO

Precursor proteins that are imported from the cytosol into the matrix of mitochondria carry positively charged amphipathic presequences and cross the inner membrane with the help of vital components of the TIM23 complex. It is currently unclear which subunits of the TIM23 complex recognize and directly bind to presequences. Here we analyzed the binding of presequence peptides to purified components of the TIM23 complex. The interaction of three different presequences with purified soluble domains of yeast Tim50 (Tim50IMS), Tim23 (Tim23IMS), and full-length Tim44 was examined. Using chemical cross-linking and surface plasmon resonance we demonstrate, for the first time, the ability of purified Tim50IMS and Tim44 to interact directly with the yeast Hsp60 presequence. We also analyzed their interaction with presequences derived from precursors of yeast mitochondrial 70-kDa heat shock protein (mHsp70) and of bovine cytochrome P450SCC. Moreover, we characterized the nature of the interactions and determined their KDs. On the basis of our results, we suggest a mechanism of translocation where stronger interactions of the presequences on the trans side of the channel support the import of precursor proteins through TIM23 into the matrix.


Assuntos
Proteínas de Membrana Transportadoras/química , Membranas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Animais , Sítios de Ligação , Biofísica/métodos , Biotina/química , Bovinos , Enzima de Clivagem da Cadeia Lateral do Colesterol/química , Reagentes de Ligações Cruzadas/química , Cinética , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície
16.
EMBO J ; 27(10): 1469-80, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18418384

RESUMO

The TIM23 (translocase of the mitochondrial inner membrane) complex mediates translocation of preproteins across and their insertion into the mitochondrial inner membrane. How the translocase mediates sorting of preproteins into the two different subcompartments is poorly understood. In particular, it is not clear whether association of two operationally defined parts of the translocase, the membrane-integrated part and the import motor, depends on the activity state of the translocase. We established conditions to in vivo trap the TIM23 complex in different translocation modes. Membrane-integrated part of the complex and import motor were always found in one complex irrespective of whether an arrested preprotein was present or not. Instead, we detected different conformations of the complex in response to the presence and, importantly, the type of preprotein being translocated. Two non-essential subunits of the complex, Tim21 and Pam17, modulate its activity in an antagonistic manner. Our data demonstrate that the TIM23 complex acts as a single structural and functional entity that is actively remodelled to sort preproteins into different mitochondrial subcompartments.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Conformação Proteica , Transporte Proteico , Proteínas Repressoras/metabolismo
17.
J Cell Biol ; 176(1): 77-88, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17190789

RESUMO

beta-Barrel proteins constitute a distinct class of mitochondrial outer membrane proteins. For import into mitochondria, their precursor forms engage the TOM complex. They are then relayed to the TOB complex, which mediates their insertion into the outer membrane. We studied the structure-function relationships of the core component of the TOB complex, Tob55. Tob55 precursors with deletions in the N-terminal domain were not affected in their targeting to and insertion into the mitochondrial outer membrane. Replacement of wild-type Tob55 by these deletion variants resulted in reduced growth of cells, and mitochondria isolated from such cells were impaired in their capacity to import beta-barrel precursors. The purified N-terminal domain was able to bind beta-barrel precursors in a specific manner. Collectively, these results demonstrate that the N-terminal domain of Tob55 recognizes precursors of beta-barrel proteins. This recognition may contribute to the coupling of the translocation of beta-barrel precursors across the TOM complex to their interaction with the TOB complex.


Assuntos
Proteínas Mitocondriais/biossíntese , Receptores de Superfície Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Mutantes/metabolismo , Fenótipo , Porinas/metabolismo , Ligação Proteica , Dobramento de Proteína , Precursores de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/biossíntese , Deleção de Sequência , Relação Estrutura-Atividade
18.
J Biol Chem ; 285(7): 4423-31, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20007714

RESUMO

The co-chaperone Hep1 is required to prevent the aggregation of mitochondrial Hsp70 proteins. We have analyzed the interaction of Hep1 with mitochondrial Hsp70 (Ssc1) and the determinants in Ssc1 that make it prone to aggregation. The ATPase and peptide binding domain (PBD) of Hsp70 proteins are connected by a linker segment that mediates interdomain communication between the domains. We show here that the minimal Hep1 binding entity of Ssc1 consists of the ATPase domain and the interdomain linker. In the absence of Hep1, the ATPase domain with the interdomain linker had the tendency to aggregate, in contrast to the ATPase domain with the mutated linker segment or without linker, and in contrast to the PBD. The closest homolog of Ssc1, bacterial DnaK, and a Ssc1 chimera, in which a segment of the ATPase domain of Ssc1 was replaced by the corresponding segment from DnaK, did not aggregate in Delta hep1 mitochondria. The propensity to aggregate appears to be a specific property of the mitochondrial Hsp70 proteins. The ATPase domain in combination with the interdomain linker is crucial for aggregation of Ssc1. In conclusion, our results suggest that interdomain communication makes Ssc1 prone to aggregation. Hep1 counteracts aggregation by binding to this aggregation-prone conformer.


Assuntos
Adenosina Trifosfatases/metabolismo , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , ATPases Transportadoras de Cálcio/genética , Imunoprecipitação , Modelos Biológicos , Chaperonas Moleculares/genética , Ligação Proteica , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Proteínas de Saccharomyces cerevisiae/genética
20.
J Cell Biol ; 175(2): 237-47, 2006 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17043137

RESUMO

The inner membrane of mitochondria is organized in two morphologically distinct domains, the inner boundary membrane (IBM) and the cristae membrane (CM), which are connected by narrow, tubular cristae junctions. The protein composition of these domains, their dynamics, and their biogenesis and maintenance are poorly understood at the molecular level. We have used quantitative immunoelectron microscopy to determine the distribution of a collection of representative proteins in yeast mitochondria belonging to seven major processes: oxidative phosphorylation, protein translocation, metabolite exchange, mitochondrial morphology, protein translation, iron-sulfur biogenesis, and protein degradation. We show that proteins are distributed in an uneven, yet not exclusive, manner between IBM and CM. The individual distributions reflect the physiological functions of proteins. Moreover, proteins can redistribute between the domains upon changes of the physiological state of the cell. Impairing assembly of complex III affects the distribution of partially assembled subunits. We propose a model for the generation of this dynamic subcompartmentalization of the mitochondrial inner membrane.


Assuntos
Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Compartimento Celular , Técnicas Imunoenzimáticas , Proteínas Mitocondriais/genética , Fosforilação Oxidativa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA