Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(4): 2387-2397, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38235992

RESUMO

We theoretically investigate the influence of diradical electron spin coupling on the time-resolved X-ray absorption spectra of the photochemical ring opening of furanone. We predict geometry-dependent carbon K-edge signals involving transitions from core orbitals to both singly and unoccupied molecular orbitals. The most obvious features of the ring opening come from the carbon atom directly involved in the bond breaking through its transition to both the newly formed singly occupied and the available lowest unoccupied molecular orbitals (SOMO and LUMO, respectively). In addition to this primary feature, the singlet spin coupling of four unpaired electrons that arises in the core-to-LUMO states creates additional geometry dependence in some spectral features with both oscillator strengths and relative excitation energies varying observably as a function of the ring opening. We attribute this behavior to a spin-occupancy-induced selection rule, which occurs when singlet spin coupling is enforced in the diradical state. Notably, one of these geometry-sensitive core-to-LUMO transitions excites core electrons from a backbone carbon not involved in the bond breaking, providing a novel nonlocal X-ray probe of chemical dynamics arising from electron spin coupling.

2.
J Chem Phys ; 158(22)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37293960

RESUMO

We explore the performance of a recently introduced N5-scaling excited-state-specific second order perturbation theory (ESMP2) on the singlet excitations of the Thiel benchmarking set. We find that, without regularization, ESMP2 is quite sensitive to π system size, performing well in molecules with small π systems but poorly in those with larger π systems. With regularization, ESMP2 is far less sensitive to π system size and shows a higher overall accuracy on the Thiel set than CC2, equation of motion-coupled cluster with singles and doubles, CC3, and a wide variety of time-dependent density functional approaches. Unsurprisingly, even regularized ESMP2 is less accurate than multi-reference perturbation theory on this test set, which can, in part, be explained by the set's inclusion of some doubly excited states but none of the strong charge transfer states that often pose challenges for state-averaging. Beyond energetics, we find that the ESMP2 doubles norm offers a relatively low-cost way to test for doubly excited character without the need to define an active space.


Assuntos
Citoesqueleto , Movimento (Física)
3.
J Phys Chem A ; 124(40): 8273-8279, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-32885970

RESUMO

We demonstrate that, rather than resorting to high-cost dynamic correlation methods, qualitative failures in excited-state potential energy surface predictions can often be remedied at no additional cost by ensuring that optimal molecular orbitals are used for each individual excited state. This approach also avoids the weighting choices required by state-averaging and dynamic weighting and obviates their need for expensive wave function response calculations when relaxing excited-state geometries. Although multistate approaches are of course preferred near conical intersections, other features of excited-state potential energy surfaces can benefit significantly from our single-state approach. In three different systems, including a double bond dissociation, a biologically relevant amino hydrogen dissociation, and an amino-to-ring intramolecular charge transfer, we show that state-specific orbitals offer qualitative improvements over the state-averaged status quo.

4.
J Chem Phys ; 152(20): 204112, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486659

RESUMO

We present a formulation of excited state mean-field theory in which the derivatives with respect to the wave function parameters needed for wave function optimization (not to be confused with nuclear derivatives) are expressed analytically in terms of a collection of Fock-like matrices. By avoiding the use of automatic differentiation and grouping Fock builds together, we find that the number of times we must access the memory-intensive two-electron integrals can be greatly reduced. Furthermore, the new formulation allows the theory to exploit the existing strategies for efficient Fock matrix construction. We demonstrate this advantage explicitly via the shell-pair screening strategy with which we achieve a cubic overall cost scaling. Using this more efficient implementation, we also examine the theory's ability to predict charge redistribution during charge transfer excitations. Using the coupled cluster as a benchmark, we find that by capturing orbital relaxation effects and avoiding self-interaction errors, excited state mean field theory out-performs other low-cost methods when predicting the charge density changes of charge transfer excitations.

5.
J Chem Phys ; 153(16): 164108, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138440

RESUMO

We show that, as in Hartree-Fock theory, the orbitals for excited state mean field theory can be optimized via a self-consistent one-electron equation in which electron-electron repulsion is accounted for through mean field operators. In addition to showing that this excited state ansatz is sufficiently close to a mean field product state to admit a one-electron formulation, this approach brings the orbital optimization speed to within roughly a factor of two of ground state mean field theory. The approach parallels Hartree Fock theory in multiple ways, including the presence of a commutator condition, a one-electron mean-field working equation, and acceleration via direct inversion in the iterative subspace. When combined with a configuration interaction singles Davidson solver for the excitation coefficients, the self-consistent field formulation dramatically reduces the cost of the theory compared to previous approaches based on quasi-Newton descent.

6.
J Chem Phys ; 153(14): 144108, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33086801

RESUMO

We present a systematically improvable approach to core excitations in variational Monte Carlo. Building on recent work in excited-state-specific Monte Carlo, we show how a straightforward protocol, starting from a quantum chemistry guess, is able to capture core state's strong orbital relaxations, maintain accuracy in the near-nuclear region during these relaxations, and explicitly balance accuracy between ground and core excited states. In water, ammonia, and methane, which serve as prototypical representatives for oxygen, nitrogen, and carbon core states, respectively, this approach predicts core excitation energies within 0.3 eV of experiment and core excitation peak separations within 0.1 eV of experiment.

7.
J Chem Phys ; 153(15): 154102, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33092351

RESUMO

We test the efficacy of excited state mean field theory and its excited-state-specific perturbation theory on the prediction of K-edge positions and x-ray peak separations. We find that the mean field theory is surprisingly accurate, even though it contains no accounting of differential electron correlation effects. In the perturbation theory, we test multiple core-valence separation schemes and find that, with the mean field theory already so accurate, electron-counting biases in one popular separation scheme become a dominant error when predicting K-edges. Happily, these appear to be relatively easy to correct for, leading to a perturbation theory for K-edge positions that is lower scaling and more accurate than coupled cluster theory and competitive in accuracy with recent high-accuracy results from restricted open-shell Kohn-Sham theory. For peak separations, our preliminary data show excited state mean field theory to be exceptionally accurate, but more extensive testing will be needed to see how it and its perturbation theory compare to coupled cluster peak separations more broadly.

8.
J Chem Phys ; 153(23): 234105, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33353344

RESUMO

We extend our hybrid linear-method/accelerated-descent variational Monte Carlo optimization approach to excited states and investigate its efficacy in double excitations. In addition to showing a superior statistical efficiency when compared to the linear method, our tests on small molecules show good energetic agreement with benchmark methods. We also demonstrate the ability to treat double excitations in systems that are too large for a full treatment by using selected configuration interaction methods via an application to 4-aminobenzonitrile. Finally, we investigate the stability of state-specific variance optimization against collapse to other states' variance minima and find that symmetry, Ansatz quality, and sample size all have roles to play in achieving stability.

9.
J Chem Phys ; 152(17): 174105, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32384844

RESUMO

We review recent advances in the capabilities of the open source ab initio Quantum Monte Carlo (QMC) package QMCPACK and the workflow tool Nexus used for greater efficiency and reproducibility. The auxiliary field QMC (AFQMC) implementation has been greatly expanded to include k-point symmetries, tensor-hypercontraction, and accelerated graphical processing unit (GPU) support. These scaling and memory reductions greatly increase the number of orbitals that can practically be included in AFQMC calculations, increasing the accuracy. Advances in real space methods include techniques for accurate computation of bandgaps and for systematically improving the nodal surface of ground state wavefunctions. Results of these calculations can be used to validate application of more approximate electronic structure methods, including GW and density functional based techniques. To provide an improved foundation for these calculations, we utilize a new set of correlation-consistent effective core potentials (pseudopotentials) that are more accurate than previous sets; these can also be applied in quantum-chemical and other many-body applications, not only QMC. These advances increase the efficiency, accuracy, and range of properties that can be studied in both molecules and materials with QMC and QMCPACK.

10.
Phys Rev Lett ; 123(3): 036402, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386452

RESUMO

We present an approach to studying optical band gaps in real solids in which quantum Monte Carlo methods allow for the application of a rigorous variational principle to both ground and excited state wave functions. In tests that include small, medium, and large band gap materials, optical gaps are predicted with a mean absolute deviation of 3.5% against experiment, less than half the equivalent errors for typical many-body perturbation theories. The approach is designed to be insensitive to the choice of density functional, a property we exploit in order to provide insight into how far different functionals are from satisfying the assumptions of many-body perturbation theory. We explore this question most deeply in the challenging case of ZnO, where we show that, although many commonly used functionals have shortcomings, there does exist a one-particle basis in which perturbation theory's zeroth-order picture is sound. Insights of this nature should be useful in guiding the future application and improvement of these widely used techniques.

11.
Phys Chem Chem Phys ; 21(27): 14491-14510, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31245799

RESUMO

We present a comparison between a number of recently introduced low-memory wave function optimization methods for variational Monte Carlo in which we find that first and second derivative methods possess strongly complementary relative advantages. While we find that low-memory variants of the linear method are vastly more efficient at bringing wave functions with disparate types of nonlinear parameters to the vicinity of the energy minimum, accelerated descent approaches are then able to locate the precise minimum with less bias and lower statistical uncertainty. By constructing a simple hybrid approach that combines these methodologies, we show that all of these advantages can be had at once when simultaneously optimizing large determinant expansions, molecular orbital shapes, traditional Jastrow correlation factors, and more nonlinear many-electron Jastrow factors.

12.
J Phys Chem A ; 123(8): 1487-1497, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30702890

RESUMO

We combine recent advances in excited state variational principles, fast multi-Slater Jastrow methods and selective configuration interaction, to create multi-Slater Jastrow wave function approximations that are optimized for individual excited states. In addition to the Jastrow variables and linear expansion coefficients, this optimization includes state-specific orbital relaxations in order to avoid the compromises necessary in state-averaged approaches. We demonstrate that, when combined with variance matching to help balance the quality of the approximation across different states, this approach delivers accurate excitation energies even when very modest multi-Slater expansions are used. Intriguingly, this accuracy is maintained even when we study a difficult chlorine-anion-to-π* charge transfer in which traditional state-averaged multireference methods must contend with different states that require drastically different orbital relaxations.

13.
J Chem Phys ; 149(18): 184106, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441916

RESUMO

We show that for both single-Slater-Jastrow and Jastrow geminal power wave functions the formal cost scaling of Hilbert space variational Monte Carlo can be reduced from fifth to fourth order in the system size, thus bringing it in line with the long-standing scaling of its real space counterpart. While traditional quantum chemistry methods can reduce costs related to the two-electron integral tensor through various tensor decomposition methods, we show that such approaches are ineffective in the presence of Hilbert space Jastrow factors. Instead, we develop a simple semi-stochastic approach that can take similar advantage of the near-sparsity of this four-index tensor. Through demonstrations on alkanes of increasing length, we show that accuracy and overall statistical uncertainty are not meaningfully affected and that a total cost crossover is reached as early as 50 electrons when using a minimal basis. Further study will be needed to assess where the crossover occurs in more compact molecular geometries and larger basis sets and to explore how in that context the crossover can be accelerated.

14.
J Chem Phys ; 149(8): 081101, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30193500

RESUMO

We present a mean field theory for excited states that is broadly analogous to ground state Hartree-Fock theory. Like Hartree-Fock, our approach is deterministic, state-specific, applies a variational principle to a minimally correlated ansatz, produces energy stationary points, relaxes the orbital basis, has a Fock-build cost-scaling, and can serve as the foundation for correlation methods such as perturbation theory and coupled cluster theory. To emphasize this last point, we pair our mean field approach with an excited state analog of second order Møller-Plesset theory and demonstrate that in water, formaldehyde, neon, and stretched lithium fluoride, the resulting accuracy far exceeds that of configuration interaction singles and rivals that of equation of motion coupled cluster.

15.
J Chem Phys ; 147(19): 194101, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166112

RESUMO

We present a simple and efficient wave function ansatz for the treatment of excited charge-transfer states in real-space quantum Monte Carlo methods. Using the recently introduced variation-after-response method [E. Neuscamman, J. Chem. Phys. 145, 081103 (2016)], this ansatz allows a crucial orbital optimization step to be performed beyond a configuration interaction singles expansion, while only requiring calculation of two Slater determinant objects. We demonstrate this ansatz for the illustrative example of the stretched LiF molecule, for a range of excited states of formaldehyde, and finally for the more challenging ethylene-tetrafluoroethylene molecule.

16.
J Chem Phys ; 147(16): 164114, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29096451

RESUMO

In the regime where traditional approaches to electronic structure cannot afford to achieve accurate energy differences via exhaustive wave function flexibility, rigorous approaches to balancing different states' accuracies become desirable. As a direct measure of a wave function's accuracy, the energy variance offers one route to achieving such a balance. Here, we develop and test a variance matching approach for predicting excitation energies within the context of variational Monte Carlo and selective configuration interaction. In a series of tests on small but difficult molecules, we demonstrate that the approach is effective at delivering accurate excitation energies when the wave function is far from the exhaustive flexibility limit. Results in C3, where we combine this approach with variational Monte Carlo orbital optimization, are especially encouraging.

17.
J Chem Phys ; 145(8): 081103, 2016 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-27586897

RESUMO

We present a new method for modeling electronically excited states that overcomes a key failing of linear response theory by allowing the underlying ground state ansatz to relax in the presence of an excitation. The method is variational, has a cost similar to ground state variational Monte Carlo, and admits both open and periodic boundary conditions. We present preliminary numerical results showing that, when paired with the Jastrow antisymmetric geminal power ansatz, the variation-after-response formalism delivers accuracies for valence and charge transfer single excitations on par with equation of motion coupled cluster, while surpassing coupled cluster's accuracy for excitations with significant doubly excited character.

18.
J Chem Theory Comput ; 20(7): 2761-2773, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38502102

RESUMO

We introduce an approach to improve single-reference coupled cluster theory in settings where the Aufbau determinant is absent from or plays only a small role in the true wave function. Using a de-excitation operator that can be efficiently hidden within a similarity transform, we create a coupled cluster wave function in which de-excitations work to suppress the Aufbau determinant and produce wave functions dominated by other determinants. Thanks to an invertible and fully exponential form, the approach is systematically improvable, size consistent, size extensive, and, interestingly, size intensive in a granular way that should make the adoption of some ground state techniques, such as local correlation, relatively straightforward. In this initial study, we apply the general formalism to create a state-specific method for orbital-relaxed, singly excited states. We find that this approach matches the accuracy of similar-cost equation-of-motion methods in valence excitations while offering improved accuracy for charge transfer states. We also find the approach to be more accurate than excited-state-specific perturbation theory in both types of states.

19.
Phys Rev Lett ; 111(18): 187205, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24237558

RESUMO

The Dirac spin liquid ground state of the spin 1/2 Heisenberg kagome antiferromagnet has potential instabilities. This has been suggested as the reason why it does not emerge as the ground state in large-scale numerical calculations. However, previous attempts to observe these instabilities have failed. We report on the discovery of a projected BCS state with lower energy than the projected Dirac spin liquid state which provides new insight into the stability of the ground state of the kagome antiferromagnet. The new state has three remarkable features. First, it breaks spatial symmetry in an unusual way that may leave spinons deconfined along one direction. Second, it breaks the U(1) gauge symmetry down to Z(2). Third, it has the spatial symmetry of a previously proposed "monopole" suggesting that it is an instability of the Dirac spin liquid. The state described herein also shares a remarkable similarity to the distortion of the kagome lattice observed at low Zn concentrations in Zn-paratacamite and in recently grown single crystals of volborthite suggesting it may already be realized in these materials.

20.
J Chem Phys ; 139(18): 181101, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24320245

RESUMO

We present a Jastrow-factor-inspired variant of coupled cluster theory that accurately describes both weak and strong electron correlation. Compatibility with quantum Monte Carlo allows for variational energy evaluations and an antisymmetric geminal power reference, two features not present in traditional coupled cluster that facilitate a nearly exact description of the strong electron correlations in minimal-basis N2 bond breaking. In double-ζ treatments of the HF and H2O bond dissociations, where both weak and strong correlations are important, this polynomial cost method proves more accurate than either traditional coupled cluster or complete active space perturbation theory. These preliminary successes suggest a deep connection between the ways in which cluster operators and Jastrow factors encode correlation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA