Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G941-51, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27056724

RESUMO

The postnatal period is crucial for the development of gastrointestinal (GI) functions. The enteric nervous system is a key regulator of GI functions, and increasing evidences indicate that 1) postnatal maturation of enteric neurons affect the development of GI functions, and 2) microbiota-derived short-chain fatty acids can be involved in this maturation. Although enteric glial cells (EGC) are central regulators of GI functions, the postnatal evolution of their phenotype remains poorly defined. We thus characterized the postnatal evolution of EGC phenotype in the colon of rat pups and studied the effect of short-chain fatty acids on their maturation. We showed an increased expression of the glial markers GFAP and S100ß during the first postnatal week. As demonstrated by immunohistochemistry, a structured myenteric glial network was observed at 36 days in the rat colons. Butyrate inhibited EGC proliferation in vivo and in vitro but had no effect on glial marker expression. These results indicate that the EGC myenteric network continues to develop after birth, and luminal factors such as butyrate endogenously produced in the colon may affect this development.


Assuntos
Butiratos/farmacologia , Plexo Mientérico/citologia , Neurogênese , Neuroglia/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Colo/citologia , Colo/crescimento & desenvolvimento , Colo/inervação , Colo/metabolismo , Ácidos Graxos/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Plexo Mientérico/crescimento & desenvolvimento , Plexo Mientérico/metabolismo , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Ratos , Ratos Sprague-Dawley , Proteínas S100/genética , Proteínas S100/metabolismo
2.
J Cell Mol Med ; 19(1): 124-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25310920

RESUMO

Foetal pig neuroblasts are interesting candidates as a cell source for transplantation, but xenotransplantation in the brain requires the development of adapted immunosuppressive treatments. As systemic administration of high doses of cyclosporine A has side effects and does not protect xenotransplants forever, we focused our work on local control of the host immune responses. We studied the advantage of cotransplanting syngenic mesenchymal stem cells (MSC) with porcine neuroblasts (pNb) in immunocompetent rat striata. Two groups of animals were transplanted, either with pNb alone or with both MSC and pNb. At day 63, no porcine neurons were detected in the striata that received only pNb, while four of six rats transplanted with both pNb and MSC exhibited healthy porcine neurons. Interestingly, 50% of the cotransplanted rats displayed healthy grafts with pNF70+ and TH+ neurons at 120 days post-transplantation. qPCR analyses revealed a general dwindling of pro- and anti-inflammatory cytokines in the striata that received the cotransplants. Motor recovery was also observed following the transplantation of pNb and MSC in a rat model of Parkinson's disease. Taken together, the present data indicate that the immunosuppressive properties of MSC are of great interest for the long-term survival of xenogeneic neurons in the brain.


Assuntos
Encéfalo/imunologia , Imunidade , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Transplante Heterólogo , Animais , Antígeno CD11b/metabolismo , Sobrevivência Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Sobrevivência de Enxerto/imunologia , Imunidade Celular , Imunocompetência , Masculino , Mesencéfalo/citologia , Dados de Sequência Molecular , Atividade Motora , Neurônios/citologia , Neurônios/metabolismo , Neurônios/transplante , Oxidopamina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica , Sus scrofa
3.
Cell Mol Gastroenterol Hepatol ; 18(1): 133-153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38428588

RESUMO

BACKGROUND & AIMS: The presence of myenteric plexitis in the proximal resection margins is a predictive factor of early postoperative recurrence in Crohn's disease. To decipher the mechanisms leading to their formation, T-cell interactions with enteric neural cells were studied in vitro and in vivo. METHODS: T cells close to myenteric neural cells were retrospectively quantified in ileocolonic resections from 9 control subjects with cancer and 20 patients with Crohn's disease. The mechanisms involved in T-cell adhesion were then investigated in co-cultures of T lymphocytes with enteric glial cells (glia). Finally, the implication of adhesion molecules in the development of plexitis and colitis was studied in vitro but also in vivo in Winnie mice. RESULTS: The mean number of T cells close to glia, but not neurons, was significantly higher in the myenteric ganglia of relapsing patients with Crohn's disease (2.42 ± 0.5) as compared with controls (0.36 ± 0.08, P = .0007). Co-culture experiments showed that exposure to proinflammatory cytokines enhanced T-cell adhesion to glia and increased intercellular adhesion molecule-1 (ICAM-1) expression in glia. We next demonstrated that T-cell adhesion to glia was inhibited by an anti-ICAM-1 antibody. Finally, using the Winnie mouse model of colitis, we showed that the blockage of ICAM-1/lymphocyte function-associated antigen-1 (LFA-1) with lifitegrast reduced colitis severity and decreased T-cell infiltration in the myenteric plexus. CONCLUSIONS: Our present work argues for a role of glia-T-cell interaction in the development of myenteric plexitis through the adhesion molecules ICAM-1/LFA-1 and suggests that deciphering the functional consequences of glia-T-cell interaction is important to understand the mechanisms implicated in the development and recurrence of Crohn's disease.


Assuntos
Adesão Celular , Técnicas de Cocultura , Doença de Crohn , Molécula 1 de Adesão Intercelular , Plexo Mientérico , Neuroglia , Linfócitos T , Humanos , Doença de Crohn/patologia , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Neuroglia/imunologia , Animais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Masculino , Feminino , Adulto , Plexo Mientérico/patologia , Plexo Mientérico/metabolismo , Plexo Mientérico/imunologia , Camundongos , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso
4.
Stem Cells ; 30(10): 2342-53, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22888011

RESUMO

Besides their therapeutic benefit as cell source, neural stem/progenitor cells (NSPCs) exhibit immunosuppressive properties of great interest for modulating immune response in the central nervous system. To decipher the mechanisms of NSPC-mediated immunosuppression, activated T cells were exposed to NSPCs isolated from fetal rat brains. Analyses revealed that NSPCs inhibited T-cell proliferation and interferon-gamma production in a dose-dependent manner. A higher proportion of helper T cells (CD4+ T cells) was found in the presence of NSPCs, but analyses of FoxP3 population indicated that T-cell suppression was not secondary to an induction of suppressive regulatory T cells (FoxP3+ CD4+ CD25+). Conversely, induction of the high affinity interleukin-2 (IL-2) receptor (CD25) and the inability of IL-2 to rescue T-cell proliferation suggest that NSPCs display immunosuppressive activity without affecting T-cell activation. Cultures in Transwell chambers or addition of NSPC-conditioned medium to activated T cells indicated that part of the suppressive activity was not contact dependent. We therefore searched for soluble factors that mediate NSPC immunosuppression. We found that NSPCs express several immunosuppressive molecules, but the ability of these cells to inhibit T-cell proliferation was only counteracted by heme oxygenase (HO) inhibitors in association or not with nitric oxide synthase inhibitors. Taken together, our findings highlight a dynamic crosstalk between NSPCs and T lymphocytes and provide the first evidence of an implication of HO-1 in mediating the immunosuppressive effects of the NSPCs.


Assuntos
Encéfalo/metabolismo , Heme Oxigenase-1/metabolismo , Imunidade Inata , Células-Tronco Neurais/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Encéfalo/citologia , Encéfalo/imunologia , Comunicação Celular/imunologia , Proliferação de Células , Técnicas de Cocultura , Embrião de Mamíferos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Expressão Gênica/imunologia , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/genética , Interferon gama/imunologia , Ativação Linfocitária/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/imunologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Receptores de Interleucina-2/genética , Receptores de Interleucina-2/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia
5.
Commun Biol ; 6(1): 236, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864093

RESUMO

Major advances have been achieved in imaging technologies but most methodological approaches currently used to study the enteric neuronal functions rely on exogenous contrast dyes that can interfere with cellular functions or survival. In the present paper, we investigated whether full-field optical coherence tomography (FFOCT), could be used to visualize and analyze the cells of the enteric nervous system. Experimental work on whole-mount preparations of unfixed mouse colons showed that FFOCT enables the visualization of the myenteric plexus network whereas dynamic FFOCT enables to visualize and identify in situ individual cells in the myenteric ganglia. Analyzes also showed that dynamic FFOCT signal could be modified by external stimuli such veratridine or changes in osmolarity. These data suggest that dynamic FFOCT could be of great interest to detect changes in the functions of enteric neurons and glia in normal and disease conditions.


Assuntos
Sistema Nervoso Entérico , Tomografia de Coerência Óptica , Animais , Camundongos , Neuroglia , Neurônios , Concentração Osmolar
6.
J Neurosci Res ; 90(8): 1507-21, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22419059

RESUMO

Ectopic expression of tropomyosin-related kinase A (TrkA), the high-affinity receptor of nerve growth factor (NGF), has been widely used in cell culture systems to uncover its role in cell survival or death events. In contrast, little is known about the consequences of its expression in vivo. To address this question, adeno-associated virus (AAV) vectors were used to express TrkA in the substantia nigra (SN) and striatum of adult rats. Nine weeks after transfer, tyrosine hydroxylase (TH) and dopamine transporter (DAT) mRNAs were slightly decreased in the ipsilateral SN. This decrease was no longer significant when NGF was delivered into the striatum. There was no change of DAT binding sites or D1 or D2 receptor mRNAs and binding sites in the striatum, suggesting that ectopic TrkA exerts a limited effect on the pool of TH and DAT transcripts, without affecting overall dopamine signaling. When transferred into the striatum, TrkA transgene had no effect on the size of the cholinergic interneurons, but it exerted typical neurotrophic effects, as shown by an enlargement of the projection neurons and nitric oxide synthase (nNOS)-expressing interneurons. This trophic action was amplified by a delivery of NGF. No toxic effect of the transgene was noted. These data indicate that ectopic expression of TrkA may result in the promotion of neurotrophic effects or can influence neuronal plasticity in the absence of exogenous NGF in neuronal populations that naturally fail to respond to this factor.


Assuntos
Gânglios da Base/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Animais , Autorradiografia , Gânglios da Base/citologia , Feminino , Técnicas de Transferência de Genes , Imuno-Histoquímica , Hibridização In Situ , Microscopia Confocal , Plasticidade Neuronal/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor trkA/genética , Transmissão Sináptica/fisiologia , Transgenes
7.
Curr Opin Organ Transplant ; 16(2): 190-4, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21415822

RESUMO

PURPOSE OF REVIEW: Cell therapy is a promising strategy for tissue repair in the central nervous system. In this perspective, several cell types are being considered, including allogenic neuroblasts, embryonic stem cells and induced pluripotent stem cells. The use of allogenic neuroblasts as cell source is limited by logistics and ethical problems whereas transplantation of the last two cell types is hampered by their propensity to generate tumour. In this context, transplantation of xenogeneic neural cells appears as an attractive approach for effective neuronal replacement in case of neurodegenerative disorders. RECENT FINDINGS: With the emergence of embryonic and induced pluripotent stem cells as potential cell source in regenerative medicine, little attention has been paid to the possibility of transplanting xenogenic neural cells in the central nervous system. However, recent progress to circumvent the host immune response in the brain has raised encouraging perspectives for intracerebral xenotransplantation as restorative strategy. SUMMARY: To date, most of the immunosuppressive strategies designed for long-term survival of intracerebral neural transplants were based on systemic immunosuppression that has detrimental side-effects. The immunological status of the brain and the presence of the blood-brain barrier raise the possibility of local immunosuppression. This article provides an overview of the strategies recently developed to protect intracerebral neural transplants with special focus on local immunosuppression.


Assuntos
Encéfalo/cirurgia , Neurônios/transplante , Transplante de Células-Tronco , Tolerância ao Transplante , Transplante Heterólogo , Animais , Encéfalo/imunologia , Sobrevivência Celular , Sobrevivência de Enxerto , Humanos , Imunossupressores/uso terapêutico , Regeneração Nervosa , Neurônios/imunologia , Resultado do Tratamento
8.
J Neuroimmunol ; 349: 577422, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068972

RESUMO

Plexitis in the proximal margin of intestinal resections are associated with post-operative recurrence of Crohn's disease. To understand their formation, in vitro analyzes were performed. T cells adhered preferentially to neuron and glial cells in mixed primary cultures of enteric nervous system and T cell activation increased their adhesion capacity. Higher number of T lymphocytes in close proximity to enteric glial cells was also observed in the myenteric ganglia of Crohn's patients as compared to control. These data show that close proximity between lymphocytes and enteric neural cells exists and may contribute to the formation of plexitis.


Assuntos
Adesão Celular/fisiologia , Doença de Crohn/metabolismo , Gânglios/metabolismo , Plexo Mientérico/metabolismo , Neurônios/metabolismo , Linfócitos T/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Doença de Crohn/patologia , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Feminino , Gânglios/patologia , Humanos , Plexo Mientérico/patologia , Neurônios/patologia , Gravidez , Ratos , Ratos Sprague-Dawley , Linfócitos T/patologia
9.
J Neurosci Res ; 87(6): 1296-309, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19115409

RESUMO

Posttranscriptional events such as RNA stabilization are important for cell differentiation, but little is known about the impact of AU-rich binding proteins (AUBPs) on the fate of neural cells. Expression of destabilizing AUBPs such as AUF1 and neuronal-specific stabilizing proteins such as HuB, HuC and HuD was therefore analyzed in the developing central nervous system. Real-time RT-PCR indicated a specific developmental pattern in the postnatal cerebellum, with a progressive down-regulation of AUF1 from P1, whereas HuB was strongly up-regulated at about P7. These changes were accompanied by a progressive increase in AUF1p45 and the disappearance of one HuB isoform from P15, suggesting particular roles for these AUBPs in the developing cerebellum. AUF1 was detected in the three main cerebellar layers, whereas Hu proteins were found only in postmitotic neurons. A role for Hu proteins in the early stages of neuronal differentiation is further supported by arrest of cell proliferation following induction of HuB or HuD expression in a neural stem cell line. The decrease in nestin expression suggest that HuD, but not HuB, favors the transition of neural progenitors into early neuroblasts, but other factors are most probably required for their full differentiation into neurons, insofar as GAP-43 was not detected in HuD-transfected cells. These data suggest critical roles for HuB at the very earliest stages of neuronal differentiation, such as cell cycle exit, and HuD might also be involved in the transition of neural progenitors into early neuroblasts. Taken together, the present results strengthen the importance of AUBPs in brain ontogenesis.


Assuntos
Cerebelo/crescimento & desenvolvimento , Proteínas ELAV/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Células-Tronco Multipotentes/citologia , Neurogênese , Neurônios/citologia , Animais , Linhagem Celular , Proliferação de Células , Cerebelo/metabolismo , Proteína Semelhante a ELAV 2 , Proteína Semelhante a ELAV 3 , Proteína Semelhante a ELAV 4 , Proteína GAP-43/metabolismo , Regulação da Expressão Gênica , Ribonucleoproteína Nuclear Heterogênea D0 , Proteínas de Filamentos Intermediários/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neurônios/fisiologia , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Neurogastroenterol Motil ; 31(1): e13467, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30240048

RESUMO

BACKGROUND: Neuroimmune interactions are essential to maintain gut homeostasis and prevent intestinal disorders but so far, the impact of enteric glial cells (EGC) on immune cells remains a relatively unexplored area of research. As a dysregulation of critical cytokines such as interleukine-7 (IL-7) was suggested to exacerbate gut chronic inflammation, we investigated whether EGC could be a source of IL-7 in the gastrointestinal tract. METHODS: Expression of IL-7 in the rat enteric nervous system was analyzed by immunochemistry and Q-PCR. IL-7 variants were cloned and specific antibodies against rat IL-7 isoforms were raised to characterize their expression in the submucosal plexus. IL-7 isoforms were produced in vitro to analyze their impact on T-cell survival. KEY RESULTS: Neurons and glial cells of the rat enteric nervous system expressed IL-7 at both mRNA and protein levels. Novel rat IL-7 isoforms with distinct C-terminal parts were detected. Three of these isoforms were found in EGC or in both enteric neurons and EGC. Exposure of EGC to pro-inflammatory cytokines (IL-1ß and/or TNFα) induced an upregulation of all IL-7 isoforms. Interestingly, time-course and intensity of the upregulation varied according to the presence or absence of exon 5a in IL-7 variants. Functional analysis on T lymphocytes revealed that only canonical IL-7 protects T cells from cell death. CONCLUSIONS AND INFERENCES: IL-7 and its variants are expressed by neurons and glial cells in the enteric nervous system. Their distinct expression and upregulation in inflammatory conditions suggest a role in gut homeostasis which could be critical in case of chronic inflammatory diseases.


Assuntos
Inflamação/imunologia , Interleucina-7/imunologia , Neuroglia/imunologia , Neuroimunomodulação/imunologia , Plexo Submucoso/imunologia , Animais , Feminino , Interleucina-7/biossíntese , Intestino Delgado/imunologia , Intestino Delgado/inervação , Neurônios/imunologia , Isoformas de Proteínas , Ratos , Ratos Sprague-Dawley , Linfócitos T/imunologia
11.
J Clin Invest ; 129(5): 1910-1925, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30939120

RESUMO

It remains unknown what causes inflammatory bowel disease (IBD), including signaling networks perpetuating chronic gastrointestinal inflammation in Crohn's disease (CD) and ulcerative colitis (UC), in humans. According to an analysis of up to 500 patients with IBD and 100 controls, we report that key transcripts of the IL-7 receptor (IL-7R) pathway are accumulated in inflamed colon tissues of severe CD and UC patients not responding to either immunosuppressive/corticosteroid, anti-TNF, or anti-α4ß7 therapies. High expression of both IL7R and IL-7R signaling signature in the colon before treatment is strongly associated with nonresponsiveness to anti-TNF therapy. While in mice IL-7 is known to play a role in systemic inflammation, we found that in humans IL-7 also controlled α4ß7 integrin expression and imprinted gut-homing specificity on T cells. IL-7R blockade reduced human T cell homing to the gut and colonic inflammation in vivo in humanized mouse models, and altered effector T cells in colon explants from UC patients grown ex vivo. Our findings show that failure of current treatments for CD and UC is strongly associated with an overexpressed IL-7R signaling pathway and point to IL-7R as a relevant therapeutic target and potential biomarker to fill an unmet need in clinical IBD detection and treatment.


Assuntos
Colite Ulcerativa/metabolismo , Colo/metabolismo , Doença de Crohn/metabolismo , Receptores de Interleucina-7/metabolismo , Linfócitos T/citologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adolescente , Adulto , Idoso , Animais , Colo/patologia , Citocinas/metabolismo , Endoscopia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Doença Enxerto-Hospedeiro/metabolismo , Humanos , Inflamação , Integrinas/metabolismo , Mucosa Intestinal/metabolismo , Leucócitos Mononucleares/citologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Transdução de Sinais , Adulto Jovem
12.
J Neuroimmunol ; 295-296: 79-83, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27235353

RESUMO

Enteric glial cells (EGC) have trophic and neuroregulatory functions in the enteric nervous system, but whether they exert a direct effect on immune cells is unknown. Here, we used co-cultures to show that human EGC can inhibit the proliferation of activated T lymphocytes. Interestingly, EGC from Crohn's patients were effective at one EGC for two T cells whereas EGC from control patients required a ratio of 1:1. These data suggest that EGC contribute to local immune homeostasis in the gastrointestinal wall. They also raise the possibility that EGC have particular immunosuppressive properties in inflammatory bowel diseases such as Crohn's disease.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sistema Nervoso Entérico/patologia , Imunossupressores/farmacologia , Neuroglia/imunologia , Linfócitos T/fisiologia , Antígenos CD/metabolismo , Proliferação de Células/fisiologia , Células Cultivadas , Técnicas de Cocultura , Doença de Crohn/patologia , Meios de Cultivo Condicionados/farmacologia , Proteína Glial Fibrilar Ácida/imunologia , Humanos , Neoplasias Intestinais/patologia , Ativação Linfocitária/fisiologia , Neuroglia/química , Linfócitos T/efeitos dos fármacos
13.
Neuroreport ; 14(11): 1529-34, 2003 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12960779

RESUMO

Inflammatory processes in the brain may trigger specific neuroprotective responses in glial cells. Here, we show that bacterial lipopolysaccharide strongly up-regulates glial derived neurotrophic factor (GDNF) mRNA while it down-regulates that of neurturin. Tumor necrosis factor alpha (TNFalpha) had different effects since it stimulated neurturin expression without enhancing GDNF mRNA. Interestingly, both lipopolysaccharide and TNFalpha triggered a significant decrease in the expression of the GDNF receptor, GFRalpha1, in glial cells. While the significance of such down-regulation during inflammatory processes remains to be characterised, the differential regulation of GDNF and neurturin following lipopolysaccharide and TNFalpha treatments suggest specific neuroprotective responses of glial cells in case of bacterial infection, trauma, transplantation or neurodegenerative diseases.


Assuntos
Lipopolissacarídeos/farmacologia , Fatores de Crescimento Neural/biossíntese , Neuroglia/metabolismo , Proteínas Proto-Oncogênicas/biossíntese , Receptores Proteína Tirosina Quinases/biossíntese , Fator de Necrose Tumoral alfa/farmacologia , Animais , Células Cultivadas , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Fatores de Crescimento Neural/genética , Neuroglia/efeitos dos fármacos , Neurturina , Ensaios de Proteção de Nucleases , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ret , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Receptores Proteína Tirosina Quinases/genética
14.
J Neurosci Methods ; 129(1): 73-9, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12951234

RESUMO

Cells derived from the central nervous system (CNS) are usually characterised by manual counting on slides after specific immunolabelling. In this study, we investigated the possibility of using flow cytometry to determine the proportion of neurons, astrocytes or microglial cells in primary cultures. We show that parameters other than physical features are necessary to discriminate between these different cell types because of some overlap in their size and granulosity. We then used specific antibodies against intracellular markers such as Tuj-1 or GFAP to discriminate neurons from astrocytes by flow cytometry. The labelling was specific and reliable, allowing quantitative studies. Indeed, we did not find any significant difference in the number of Tuj-1 and GFAP-positive cells in primary cultures of neuronal and glial cells as determined by manual counting on slides or flow cytometry. More importantly, similar data were obtained in mixed populations, indicating that flow cytometry can be used for quantitative studies of heterogeneous cultures. The flow cytometry therefore appears to be a reliable method for the phenotypic characterisation of CNS-derived cells. This technique which enables a rapid analysis of numerous samples, might be particularly interesting for the study of neural stem cell differentiation.


Assuntos
Antígenos CD , Antígenos de Neoplasias , Antígenos de Superfície , Proteínas Aviárias , Proteínas Sanguíneas , Separação Celular/métodos , Citometria de Fluxo/métodos , Neurônios/citologia , Animais , Astrócitos/citologia , Basigina , Encéfalo/citologia , Encéfalo/metabolismo , Contagem de Células , Tamanho Celular , Células Cultivadas , Técnicas de Cocultura , Espaço Extracelular/metabolismo , Citometria de Fluxo/instrumentação , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica/métodos , Glicoproteínas de Membrana/metabolismo , Proteínas de Neurofilamentos/metabolismo , Proteínas/metabolismo , Ratos , Reprodutibilidade dos Testes , Fatores de Tempo , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
15.
Front Cell Neurosci ; 6: 17, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514520

RESUMO

Neural transplantation is a promising therapeutic strategy for neurodegenerative diseases and other disorders of the central nervous system (CNS) such as Parkinson and Huntington diseases, multiple sclerosis or stroke. Although cell replacement therapy already went through clinical trials for some of these diseases using fetal human neuroblasts, several significant limitations led to the search for alternative cell sources that would be more suitable for intracerebral transplantation.Taking into account logistical and ethical issues linked to the use of tissue derived from human fetuses, and the immunologically special status of the CNS allowing the occurrence of deleterious immune reactions, neural stem/progenitor cells (NSPCs) appear to be an interesting cell source candidate. In addition to their ability for replacing cell populations lost during the pathological events, NSPCs also display surprising therapeutic effects of neuroprotection and immunomodulation. A better knowledge of the mechanisms involved in these specific characteristics will hopefully lead in the future to a successful use of NSPCs in regenerative medicine for CNS disorders.

16.
Methods Mol Biol ; 885: 233-43, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22565999

RESUMO

Intracerebral cell transplantation offers the possibility of replacing lost neurons in case of neurodegenerative disorders. To date, the best functional recovery for Parkinson's patients has been obtained using neuroblasts derived from human foetal mesencephalon, but the ethical and practical problems relative to the use of human foetal tissue lead to consideration of alternative sources of cells. In this regard, porcine neuroblasts appear as a valuable source as these cells are available in large quantity and programmed to extend long neurites as human neurons. However, the potential use of pig neural cells in the clinical setting depends on efficient and safe immunosuppression. So, most experimental work in this domain aims at developing immunosuppressive treatments specifically adapted to the central nervous system. In such perspective, transplantation of porcine mesencephalic neuroblasts into the striatum of the adult rat brain is of great interest. Indeed, rejection of intracerebral xenografts has been quite well described in rats, and graft survival can be easily monitored in a rat model of Parkinson's disease. In the present chapter, we describe the methods for isolating neuroblasts from foetal porcine mesencephalon as well as the technique of intracerebral transplantation in adult immunocompetent rats.


Assuntos
Mesencéfalo/citologia , Neurônios/transplante , Transplante Heterólogo/métodos , Animais , Corpo Estriado/cirurgia , Modelos Animais de Doenças , Feto , Sobrevivência de Enxerto , Humanos , Imuno-Histoquímica , Doença de Parkinson/terapia , Perfusão , Ratos , Suínos
17.
Methods Mol Biol ; 677: 233-43, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20941615

RESUMO

Neural stem/progenitor cells (NSPCs) are multi-potent cells defined by their ability to self-renew and differentiate into cells of glial and neuronal lineage. Because of these properties, NSPCs have been proposed as therapeutic tools to replace lost neurons. Recent observations in animal models of immune-related diseases indicate that NSPCs display immunomodulatory properties that might be a great interest for cell therapy. In particular, transplantation of NSPCs might be very useful as local immunosuppressive agent to promote the long-term survival of neuronal xenotransplant in the brain. To study this possibility, we have analysed the impact of NSPCs on anti-CD3/CD28-activated T cells. In vitro analyses clearly show that porcine, rat, and mouse NSPCs inhibit the proliferation of activated T cells. This result raises new perspectives concerning the use of NSPCs in cell therapy.


Assuntos
Anticorpos Monoclonais/farmacologia , Complexo CD3/imunologia , Células-Tronco Multipotentes/imunologia , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Animais , Anticorpos Monoclonais Humanizados , Encéfalo/citologia , Antígenos CD28/imunologia , Diferenciação Celular/fisiologia , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Imunossupressores/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/fisiologia , Neuroglia/citologia , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Transplante de Células-Tronco/mortalidade , Células-Tronco/citologia , Suínos , Linfócitos T/citologia , Linfócitos T/imunologia
18.
Immunotherapy ; 3(4 Suppl): 39-41, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21524169

RESUMO

Transplantation of neural cells provides an interesting form of therapy for certain CNS disorders. Although the brain has a special immune status, xenografts of fetal porcine neuroblasts are ultimately rejected after a lag of several weeks. Various strategies have been proposed to prevent this process. These include the design of transgenic pigs whose neurons have an increased immunosuppressive potential. An interesting alternative is provided by the use of neural stem/progenitor cells, which are multipotent cells found in the fetal or adult CNS. These cells are known to be poorly immunogenic. However, pig or rat neural stem/progenitor cells are highly immunosuppressive, as shown by their ability to block the proliferation of activated T lymphocytes. This effect is mediated by cell secreted factor(s), whose nature is discussed.


Assuntos
Células-Tronco Adultas/imunologia , Doenças do Sistema Nervoso Central/imunologia , Rejeição de Enxerto/imunologia , Células-Tronco Neurais/imunologia , Transplante de Células-Tronco , Células-Tronco Adultas/transplante , Animais , Animais Geneticamente Modificados , Doenças do Sistema Nervoso Central/terapia , Rejeição de Enxerto/prevenção & controle , Histocompatibilidade , Humanos , Tolerância Imunológica , Modelos Animais , Células-Tronco Neurais/transplante , Comunicação Parácrina , Suínos , Linfócitos T/imunologia
19.
Exp Neurol ; 230(1): 35-47, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20470774

RESUMO

Intracerebral xenotransplantation of porcine fetal neuroblasts (pNB) is considered as an alternative to human neuroblasts for the treatment of neurodegenerative diseases. However, pNB are systematically rejected, even in an immunoprivileged site such as the brain. Within this context, neural stem/precursor cells (NSPC), which were suggested as exhibiting low immunogenicity, appeared as a useful source of xenogeneic cells. To determine the advantage of using porcine NSPC (pNSPC) in xenotransplantation, pNB and pNSPC were grafted into the striatum of rats without immunosuppression. At day 63, all the pNB were rejected while 40% of the rats transplanted with pNSPC exhibited large and healthy grafts with numerous pNF70-positive cells. The absence of inflammation at day 63 and the occasional presence of T cells in pNSPC grafts evoked a weak host immune response which might be partly due to the immunosuppressive properties of the transplanted cells. T cell proliferation assays confirmed such a hypothesis by revealing an inhibitory effect of pNSPC on T cells through a soluble factor. In addition to their immunosuppressive effect, in contrast to pNB, very few pNSPC differentiated into tyrosine hydroxylase-positive neurons but the cells triggered an intense innervation of the striatum by rat dopaminergic fibers coming from the substantia nigra. Further experiments will be required to optimize the use of pNSPC in regenerative medicine but here we show that their immunomodulatory and trophic activities might be of great interest for restorative strategies. This article is part of a Special Issue entitled "Interaction between repair, disease, & inflammation."


Assuntos
Transplante de Células/métodos , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/fisiologia , Síndromes Neurotóxicas/cirurgia , Animais , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Citometria de Fluxo/métodos , Inflamação/metabolismo , Masculino , Mesencéfalo/citologia , Mesencéfalo/embriologia , Proteínas do Tecido Nervoso/metabolismo , Síndromes Neurotóxicas/patologia , Oxidopamina/toxicidade , Ratos , Ratos Endogâmicos Lew , Suínos , Linfócitos T/fisiologia , Fatores de Tempo , Transplante Heterólogo/métodos , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Parkinsons Dis ; 2011: 987084, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21766003

RESUMO

A transgenic Sprague Dawley rat bearing the A30P and A53T α-synuclein (α-syn) human mutations under the control of the tyrosine hydroxylase promoter was generated in order to get a better understanding of the role of the human α-syn mutations on the neuropathological events involved in the progression of the Parkinson's disease (PD). This rat displayed olfactory deficits in the absence of motor impairments as observed in most early PD cases. In order to investigate the role of the mutated α-syn on cell proliferation, we focused on the subventricular zone (SVZ) and the olfactory bulbs (OB) as a change of the proliferation could affect OB function. The effect on OB dopaminergic innervation was investigated. The human α-syn co-localized in TH-positive OB neurons. No human α-syn was visualized in the SVZ. A significant increase in resident cell proliferation in the glomerular but not in the granular layers of the OB and in the SVZ was observed. TH innervation was significantly increased within the glomerular layer without an increase in the size of the glomeruli. Our rat could be a good model to investigate the role of human mutated α-syn on the development of olfactory deficits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA