Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2314083121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38427599

RESUMO

In a stack of atomically thin van der Waals layers, introducing interlayer twist creates a moiré superlattice whose period is a function of twist angle. Changes in that twist angle of even hundredths of a degree can dramatically transform the system's electronic properties. Setting a precise and uniform twist angle for a stack remains difficult; hence, determining that twist angle and mapping its spatial variation is very important. Techniques have emerged to do this by imaging the moiré, but most of these require sophisticated infrastructure, time-consuming sample preparation beyond stack synthesis, or both. In this work, we show that torsional force microscopy (TFM), a scanning probe technique sensitive to dynamic friction, can reveal surface and shallow subsurface structure of van der Waals stacks on multiple length scales: the moirés formed between bi-layers of graphene and between graphene and hexagonal boron nitride (hBN) and also the atomic crystal lattices of graphene and hBN. In TFM, torsional motion of an Atomic Force Microscope (AFM) cantilever is monitored as it is actively driven at a torsional resonance while a feedback loop maintains contact at a set force with the sample surface. TFM works at room temperature in air, with no need for an electrical bias between the tip and the sample, making it applicable to a wide array of samples. It should enable determination of precise structural information including twist angles and strain in moiré superlattices and crystallographic orientation of van der Waals flakes to support predictable moiré heterostructure fabrication.

2.
Nat Mater ; 16(7): 767-774, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28414316

RESUMO

Two-step nucleation pathways in which disordered, amorphous, or dense liquid states precede the appearance of crystalline phases have been reported for a wide range of materials, but the dynamics of such pathways are poorly understood. Moreover, whether these pathways are general features of crystallizing systems or a consequence of system-specific structural details that select for direct versus two-step processes is unknown. Using atomic force microscopy to directly observe crystallization of sequence-defined polymers, we show that crystallization pathways are indeed sequence dependent. When a short hydrophobic region is added to a sequence that directly forms crystalline particles, crystallization instead follows a two-step pathway that begins with the creation of disordered clusters of 10-20 molecules and is characterized by highly non-linear crystallization kinetics in which clusters transform into ordered structures that then enter the growth phase. The results shed new light on non-classical crystallization mechanisms and have implications for the design of self-assembling polymer systems.


Assuntos
Materiais Biomiméticos/química , Modelos Químicos , Modelos Moleculares , Peptidomiméticos/química , Cristalização , Cinética
3.
J Am Chem Soc ; 139(26): 8915-8921, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28636349

RESUMO

Water within and surrounding the structure of a biological system adopts context-specific dynamics that mediate virtually all of the events involved in the inner workings of a cell. These events range from protein folding and molecular recognition to the formation of hierarchical structures. Water dynamics are mediated by the chemistry and geometry of interfaces where water and biomolecules meet. Here we investigate experimentally and computationally the translational dynamics of vicinal water molecules within the volume of a supramolecular peptide nanofiber measuring 6.7 nm in diameter. Using Overhauser dynamic nuclear polarization relaxometry, we show that drastic differences exist in water motion within a distance of about one nanometer from the surface, with rapid diffusion in the hydrophobic interior and immobilized water on the nanofiber surface. These results demonstrate that water associated with materials designed at the nanoscale is not simply a solvent, but rather an integral part of their structure and potential functions.

4.
Nat Mater ; 15(4): 469-76, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26779883

RESUMO

By means of two supramolecular systems--peptide amphiphiles engaged in hydrogen-bonded ß-sheets, and chromophore amphiphiles driven to assemble by π-orbital overlaps--we show that the minima in the energy landscapes of supramolecular systems are defined by electrostatic repulsion and the ability of the dominant attractive forces to trap molecules in thermodynamically unfavourable configurations. These competing interactions can be selectively switched on and off, with the order of doing so determining the position of the final product in the energy landscape. Within the same energy landscape, the peptide-amphiphile system forms a thermodynamically favoured product characterized by long bundled fibres that promote biological cell adhesion and survival, and a metastable product characterized by short monodisperse fibres that interfere with adhesion and can lead to cell death. Our findings suggest that, in supramolecular systems, functions and energy landscapes are linked, superseding the more traditional connection between molecular design and function.


Assuntos
Mioblastos/metabolismo , Peptídeos/química , Termodinâmica , Animais , Adesão Celular , Linhagem Celular , Camundongos , Mioblastos/citologia , Estrutura Secundária de Proteína , Eletricidade Estática
5.
Nano Lett ; 16(5): 3042-50, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27070195

RESUMO

The nanostructures of self-assembling biomaterials have been previously designed to tune the release of growth factors in order to optimize biological repair and regeneration. We report here on the discovery that weakly cohesive peptide nanostructures in terms of intermolecular hydrogen bonding, when combined with low concentrations of osteogenic growth factor, enhance both BMP-2 and Wnt mediated signaling in myoblasts and bone marrow stromal cells, respectively. Conversely, analogous nanostructures with enhanced levels of internal hydrogen bonding and cohesion lead to an overall reduction in BMP-2 signaling. We propose that the mechanism for enhanced growth factor signaling by the nanostructures is related to their ability to increase diffusion within membrane lipid rafts. The phenomenon reported here could lead to new nanomedicine strategies to mediate growth factor signaling for translational targets.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Nanofibras/química , Peptídeos/química , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Ligação de Hidrogênio , Cinética , Microdomínios da Membrana/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Osteogênese , Tamanho da Partícula , Conformação Proteica em Folha beta , Transdução de Sinais , Propriedades de Superfície
6.
Nat Mater ; 13(8): 812-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24859643

RESUMO

A large variety of functional self-assembled supramolecular nanostructures have been reported over recent decades. The experimental approach to these systems initially focused on the design of molecules with specific interactions that lead to discrete geometric structures, and more recently on the kinetics and mechanistic pathways of self-assembly. However, there remains a major gap in our understanding of the internal conformational dynamics of these systems and of the links between their dynamics and function. Molecular dynamics simulations have yielded information on the molecular fluctuations of supramolecular assemblies, yet experimentally it has been difficult to obtain analogous data with subnanometre spatial resolution. Using site-directed spin labelling and electron paramagnetic resonance spectroscopy, we measured the conformational dynamics of a self-assembled nanofibre in water through its 6.7 nm cross-section. Our measurements provide unique insight for the design of supramolecular functional materials.


Assuntos
Nanofibras/química , Peptídeos/química , Dicroísmo Circular , Microscopia Crioeletrônica , Difusão , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Microscopia Eletrônica de Transmissão , Conformação Molecular , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Marcadores de Spin
7.
J Am Chem Soc ; 136(24): 8540-3, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24911245

RESUMO

The nature of supramolecular structures could be strongly affected by the pathways followed during their formation just as mechanisms and final outcomes in chemical reactions vary with the conditions selected. So far this is a largely unexplored area of supramolecular chemistry. We demonstrate here how different preparation protocols to self-assemble peptide amphiphiles in water can result in the formation of different supramolecular morphologies, either long filaments containing ß-sheets or smaller aggregrates containing peptide segments in random coil conformation. We found that the assembly rate into ß-sheets decreases in the presence of a destabilizing "good" solvent like hexafluoroisopropanol (HFIP) and is affected by transient conditions in solution. Also the peptide amphiphile investigated spontaneously nucleates the ß-sheet-containing filaments at a critical fraction of HFIP in water below 21%. Furthermore, ß-sheet assemblies have a high kinetic stability and, once formed, do not disassemble rapidly. We foresee that insights into the characteristic dynamics of a supramolecular system provide an efficient approach to select the optimum assembly pathway necessary for function.


Assuntos
Peptídeos/síntese química , Tensoativos/síntese química , Cinética , Conformação Molecular , Peptídeos/química , Tensoativos/química
8.
J Am Chem Soc ; 136(41): 14377-80, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25255327

RESUMO

Charged nanoscale filaments are well-known in natural systems such as filamentous viruses and the cellular cytoskeleton. The unique properties of these structures have inspired the design of self-assembled nanofibers for applications in regenerative medicine, drug delivery, and catalysis, among others. We report here on an amphiphile of completely different chemistry based on azobenzene and a quaternary ammonium bromide headgroup that self-assembles into highly charged nanofibers in water and orders into two-dimensional crystals. Interestingly small-angle X-ray scattering (SAXS) shows that these fibers of 5.6 nm cross-sectional diameter order into crystalline arrays with remarkably large interfiber spacings of up to 130 nm. Solution concentration and temperature can be adjusted to control the interfiber spacings, and addition of salt destroyed the crystal packing indicating the electrostatic repulsions are necessary for the observed ordering. Our findings here demonstrate the universal nature of this phenomenon in systems of highly charged nanoscale filaments.


Assuntos
Nanofibras/química , Estrutura Molecular , Espalhamento a Baixo Ângulo
9.
Biomacromolecules ; 15(4): 1323-7, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24697625

RESUMO

Electrospinning is a high-throughput, low-cost technique for manufacturing long fibers from solution. Conventionally, this technique is used with covalent polymers with large molecular weights. We report here the electrospinning of functional peptide-based supramolecular polymers from water at very low concentrations (<4 wt %). Molecules with low molecular weights (<1 kDa) could be electrospun because they self-assembled into one-dimensional supramolecular polymers upon solvation and the critical parameters of viscosity, solution conductivity, and surface tension were optimized for this technique. The supramolecular structure of the electrospun fibers could ensure that certain residues, like bioepitopes, are displayed on the surface even after processing. This system provides an opportunity to electrospin bioactive supramolecular materials from water for biomedical applications.


Assuntos
Técnicas Eletroquímicas , Polímeros/química , Materiais Biocompatíveis/química , Óptica e Fotônica , Peptídeos/química , Reologia , Soluções , Propriedades de Superfície , Viscosidade , Água
10.
Proc Natl Acad Sci U S A ; 108(33): 13438-43, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21808036

RESUMO

There is great demand for the development of novel therapies for ischemic cardiovascular disease, a leading cause of morbidity and mortality worldwide. We report here on the development of a completely synthetic cell-free therapy based on peptide amphiphile nanostructures designed to mimic the activity of VEGF, one of the most potent angiogenic signaling proteins. Following self-assembly of peptide amphiphiles, nanoscale filaments form that display on their surfaces a VEGF-mimetic peptide at high density. The VEGF-mimetic filaments were found to induce phosphorylation of VEGF receptors and promote proangiogenic behavior in endothelial cells, indicated by an enhancement in proliferation, survival, and migration in vitro. In a chicken embryo assay, these nanostructures elicited an angiogenic response in the host vasculature. When evaluated in a mouse hind-limb ischemia model, the nanofibers increased tissue perfusion, functional recovery, limb salvage, and treadmill endurance compared to controls, which included the VEGF-mimetic peptide alone. Immunohistological evidence also demonstrated an increase in the density of microcirculation in the ischemic hind limb, suggesting the mechanism of efficacy of this promising potential therapy is linked to the enhanced microcirculatory angiogenesis that results from treatment with these polyvalent VEGF-mimetic nanofibers.


Assuntos
Proteínas Angiogênicas/uso terapêutico , Isquemia/tratamento farmacológico , Nanoestruturas/química , Fator A de Crescimento do Endotélio Vascular/fisiologia , Cicatrização/efeitos dos fármacos , Proteínas Angiogênicas/química , Animais , Linhagem Celular , Embrião de Galinha , Endotélio Vascular , Humanos , Camundongos , Mimetismo Molecular , Nanoestruturas/uso terapêutico , Neovascularização Fisiológica/efeitos dos fármacos
11.
J Am Chem Soc ; 135(16): 6211-9, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23574404

RESUMO

We report here the preparation of filamentous virus-like particles by the encapsulation of a linear or circular double-stranded DNA template with preassembled mushroom-shaped nanostructures having a positively charged domain. These nanostructures mimic the capsid proteins of natural filamentous viruses and are formed by self-assembly of coiled-coil peptides conjugated at opposite termini with cationic segments and poly(ethylene glycol) (PEG) chains. We found that a high molecular weight of PEG segments was critical for the formation of monodisperse and uniformly shaped filamentous complexes. It is proposed that electrostatic attachment of the nanostructures with sufficiently long PEG segments generates steric forces that increase the rigidity of the neutralized DNA template. This stiffening counterbalances the natural tendency of the DNA template to condense into toroids or buckle multiple times. The control achieved over both shape and dimensions of the particles offers a strategy to create one-dimensional supramolecular nanostructures of defined length containing nucleic acids.


Assuntos
DNA Viral/química , DNA/química , Peptídeos/química , Vacinas de Partículas Semelhantes a Vírus/química , Algoritmos , Eletroforese em Gel de Poliacrilamida , Peso Molecular , Método de Monte Carlo , Conformação de Ácido Nucleico , Plasmídeos , Polietilenoglicóis/química , Espalhamento de Radiação , Eletricidade Estática , Ultracentrifugação , Raios X
12.
Small ; 8(14): 2195-202, 2194, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22570174

RESUMO

Understanding and mimicking the hierarchical structure of mineralized tissue is a challenge in the field of biomineralization and is important for the development of scaffolds to guide bone regeneration. Bone is a remarkable tissue with an organic matrix comprised of aligned collagen bundles embedded with nanometer-sized inorganic hydroxyapatite (HAP) crystals that exhibit orientation on the macroscale. Hybrid organic-inorganic structures mimic the composition of mineralized tissue for functional bone scaffolds, but the relationship between morphology of the organic matrix and orientation of mineral is poorly understood. Herein the mineralization of supramolecular peptide amphiphile templates, that are designed to vary in nanoscale morphology by altering the amino acid sequence, is reported. It is found that 1D cylindrical nanostructures direct the growth of oriented HAP crystals, while flatter nanostructures fail to guide the orientation found in biological systems. The geometric constraints associated with the morphology of the nanostructures may effectively control HAP nucleation and growth. Additionally, the mineralization of macroscopically aligned bundles of the nanoscale assemblies to create hierarchically ordered scaffolds is explored. Again, it is found that only aligned gel templates of cylindrical nanostructures lead to hierarchical control over hydroxyapatite orientation across multiple length scales as found in bone.


Assuntos
Materiais Biomiméticos/síntese química , Durapatita/química , Nanofibras/química , Peptídeos/química , Materiais Biomiméticos/metabolismo , Cristalização , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Moleculares
13.
Curr Opin Colloid Interface Sci ; 17(6): 350-359, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23204913

RESUMO

Elucidating the structural information of nanoscale materials in their solvent-exposed state is crucial, as a result, cryogenic transmission electron microscopy (cryo-TEM) has become an increasingly popular technique in the materials science, chemistry, and biology communities. Cryo-TEM provides a method to directly visualize the specimen structure in a solution-state through a thin film of vitrified solvent. This technique complements X-ray, neutron, and light scattering methods that probe the statistical average of all species present; furthermore, cryo-TEM can be used to observe changes in structure over time. In the area of self-assembly, this tool has been particularly powerful for the characterization of natural and synthetic small molecule assemblies, as well as hybrid organic-inorganic composites. In this review, we discuss recent advances in cryogenic TEM in the context of self-assembling systems with emphasis on characterization of transitions observed in response to external stimuli.

14.
Soft Matter ; 8(13): 3586-3595, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23130084

RESUMO

High aspect ratio peptide nanofibers have potential as biodegradable vehicles for drug delivery. We report here the synthesis of four self-assembling peptide amphiphiles (PAs) containing a lysine ε-amine-derivatized hydrazide that was systematically placed at different positions along the backbone of the peptide sequence C(16)V(2)A(2)E(2) (where C(16) = palmitic acid). Hydrazones were formed from each hydrazide by condensation with the solvatochromic dye 6-propionyl-2-dimethylaminonaphthalene (Prodan), which is typically used to probe cell membranes. All four compounds were found to self-assemble into nanofibers, and Prodan release was measured from filamentous gels prepared by screening PA charges with divalent cations. Near zero-order release kinetics were observed for all nanofibers, but release half-lives differed depending on the position of the fluorophore in the PA sequence. Dye release kinetics were rationalized through the use of cryogenic transmission electron microscopy, small-angle X-ray scattering, fluorescence spectroscopy, fluorescence anisotropy, circular dichroism, and partition coefficient calculations. Relative release rates were found to correlate directly with fluorophore mobility, which varied inversely with packing density, degree of order in the hydrophobic PA core, and the ß-sheet character of the peptide.

15.
J Biol Chem ; 285(29): 22426-36, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20421299

RESUMO

Mixed lineage kinases (MLKs) have been implicated in cytokine signaling as well as in cell death pathways. Our studies show that MLK3 is activated in leukocyte-infiltrated islets of non-obese diabetic mice and that MLK3 activation compromises mitochondrial integrity and induces apoptosis of beta cells. Using an ex vivo model of islet-splenocyte co-culture, we show that MLK3 mediates its effects via the pseudokinase TRB3, a mammalian homolog of Drosophila Tribbles. TRB3 expression strongly coincided with conformational change and mitochondrial translocation of BAX. Mechanistically, MLK3 directly interacted with and stabilized TRB3, resulting in inhibition of Akt, a strong suppressor of BAX translocation and mitochondrial membrane permeabilization. Accordingly, attenuation of MLK3 or TRB3 expression each prevented cytokine-induced BAX conformational change and attenuated the progression to apoptosis. We conclude that MLKs compromise mitochondrial integrity and suppress cellular survival mechanisms via TRB3-dependent inhibition of Akt.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citocinas/farmacologia , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , MAP Quinase Quinase Quinases/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Repressoras/metabolismo , Adulto , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cocultura , Ativação Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/metabolismo , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
16.
Soft Matter ; 7(20): 9665-9672, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22408645

RESUMO

Peptide self-assembly has been shown to be a useful tool for the preparation of bioactive nanostructures, and recent work has demonstrated their potential as therapies for regenerative medicine. In principle, one route to make these nanostructures more biomimetic would be to incorporate in their molecular design the capacity for biological sensing. We report here on the use of a reversible enzymatic trigger to control the assembly and disassembly of peptide amphiphile (PA) nanostructures. The PA used in these studies contained a consensus substrate sequence specific to protein kinase A (PKA), a biological enzyme important for intracellular signaling that has also been shown to be an extracellular cancer biomarker. Upon treatment with PKA, this PA molecule becomes phosphorylated causing the high aspect-ratio filamentous PA nanostructures to disassemble. Treatment with an enzyme to cleave the phosphate group results in reformation of the filamentous nanostructures. We also show that disassembly in the presence of PKA allows the enzyme-triggered release of an encapsulated cancer drug. In addition, these drug-loaded nanostructures were found to induce preferential cytotoxicity in a cancer cell line that is known to secrete high levels of PKA. This ability to control nanostructure through an enzymatic switch could allow for the preparation of highly sophisticated and biomimetic materials that incorporate a biological sensing capability to enable therapeutic specificity.

17.
J Colloid Interface Sci ; 555: 498-508, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31401482

RESUMO

HYPOTHESIS: While soil water repellency causes a variety of undesirable environmental effects, the underlying mechanism is unknown. We investigate the coupled effects of chemical characteristics and surface topology in a simple model system of two lipids, DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine) and DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), and a clay substrate. These closely-related lipids allowed the study of how a small change in chemical structure influences the surface hydrophobicity. EXPERIMENTS: Techniques ranging from molecular (simulations) to nanoscopic (atomic force microscopy) to microscopic (fluorescence microscopy) to macroscopic (contact angle measurements) were used to explore interactions at all length scales. The wettability was assessed from initial contact angle and time-dependent changes in droplet shape. FINDINGS: The lipid distribution depended on the lipid's melting temperature: solid lipids did not spread evenly through the film, while liquid ones did. However, the initial contact angle did not change appreciably with the addition of DSPE or DOPE. Only DSPE heated above its melting temperature induced significant changes. In addition to the initial contact angle, quantitative variables extracted from the change in droplet shape over time correlated with the film topography or lipid distribution. These results define a new quantitative approach to investigating partially-wettable soils and provide a potential rationale for why clays can remediate water-repellent soils.

18.
Nat Commun ; 9(1): 270, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348551

RESUMO

Despite recent advances in the assembly of organic nanotubes, conferral of sequence-defined engineering and dynamic response characteristics to the tubules remains a challenge. Here we report a new family of highly designable and dynamic nanotubes assembled from sequence-defined peptoids through a unique "rolling-up and closure of nanosheet" mechanism. During the assembly process, amorphous spherical particles of amphiphilic peptoid oligomers crystallize to form well-defined nanosheets before folding to form single-walled nanotubes. These nanotubes undergo a pH-triggered, reversible contraction-expansion motion. By varying the number of hydrophobic residues of peptoids, we demonstrate tuning of nanotube wall thickness, diameter, and mechanical properties. Atomic force microscopy-based mechanical measurements show peptoid nanotubes are highly stiff (Young's Modulus ~13-17 GPa). We further demonstrate the precise incorporation of functional groups within nanotubes and their applications in water decontamination and cellular adhesion and uptake. These nanotubes provide a robust platform for developing biomimetic materials tailored to specific applications.


Assuntos
Nanotubos/química , Peptoides/química , Dobramento de Proteína , Multimerização Proteica , Células A549 , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanotubos/ultraestrutura , Peptidomiméticos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA