Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 294(45): 16831-16845, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31562244

RESUMO

The healthy heart has a dynamic capacity to respond and adapt to changes in nutrient availability. Metabolic inflexibility, such as occurs with diabetes, increases cardiac reliance on fatty acids to meet energetic demands, and this results in deleterious effects, including mitochondrial dysfunction, that contribute to pathophysiology. Enhancing glucose usage may mitigate metabolic inflexibility and be advantageous under such conditions. Here, we sought to identify how mitochondrial function and cardiac metabolism are affected in a transgenic mouse model of enhanced cardiac glycolysis (GlycoHi) basally and following a short-term (7-day) high-fat diet (HFD). GlycoHi mice constitutively express an active form of phosphofructokinase-2, resulting in elevated levels of the PFK-1 allosteric activator fructose 2,6-bisphosphate. We report that basally GlycoHi mitochondria exhibit augmented pyruvate-supported respiration relative to fatty acids. Nevertheless, both WT and GlycoHi mitochondria had a similar shift toward increased rates of fatty acid-supported respiration following HFD. Metabolic profiling by GC-MS revealed distinct features based on both genotype and diet, with a unique increase in branched-chain amino acids in the GlycoHi HFD group. Targeted quantitative proteomics analysis also supported both genotype- and diet-dependent changes in protein expression and uncovered an enhanced expression of pyruvate dehydrogenase kinase 4 (PDK4) in the GlycoHi HFD group. These results support a newly identified mechanism whereby the levels of fructose 2,6-bisphosphate promote mitochondrial PDK4 levels and identify a secondary adaptive response that prevents excessive mitochondrial pyruvate oxidation when glycolysis is sustained after a high-fat dietary challenge.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Glicólise/efeitos dos fármacos , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Glucose/metabolismo , Camundongos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/citologia , Proteômica , Estresse Fisiológico , Fatores de Tempo
2.
Metabolomics ; 15(2): 18, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30830475

RESUMO

INTRODUCTION: As an insulin sensitive tissue, the heart decreases glucose usage during fasting. This response is mediated, in part, by decreasing phosphofructokinase-2 (PFK-2) activity and levels of its product fructose-2,6-bisphosphate. However, the importance of fructose-2,6-bisphosphate in the fasting response on other metabolic pathways has not been evaluated. OBJECTIVES: The goal of this study is to determine how sustaining cardiac fructose-2,6-bisphosphate levels during fasting affects the metabolomic profile. METHODS: Control and transgenic mice expressing a constitutively active form of PFK-2 (GlycoHi) were subjected to either 12-h fasting or regular feeding. Animals (n = 4 per group) were used for whole-heart extraction, followed by gas chromatography-mass spectrometry metabolic profiling and multivariate data analysis. RESULTS: Principal component analysis displayed differences between Control and GlycoHi groups under both fasting and fed conditions while a clear response to fasting was observed only for Control animals. However, pathway analysis revealed that these smaller changes in the GlycoHi group were significantly associated with branched-chain amino acid (BCAA) metabolism (~ 40% increase in all BCAAs). Correlation network analysis demonstrated clear differences in response to fasting between Control and GlycoHi groups amongst most parameters. Notably, fasting caused an increase in network density in the Control group from 0.12 to 0.14 while the GlycoHi group responded oppositely (0.17-0.15). CONCLUSIONS: Elevated cardiac PFK-2 activity during fasting selectively increases BCAAs levels and decreases global changes in metabolism.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Frutosedifosfatos/metabolismo , Miocárdio/metabolismo , Animais , Glicemia/metabolismo , Jejum/metabolismo , Frutose , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glucose/metabolismo , Coração/fisiologia , Insulina , Masculino , Metabolômica/métodos , Camundongos , Camundongos Transgênicos , Fosfofrutoquinase-2/metabolismo , Análise de Componente Principal
3.
Calcif Tissue Int ; 104(3): 285-300, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30413854

RESUMO

We investigated the effects of 6-month green tea polyphenols (GTP) supplementation on bone architecture, turnover, and mechanical properties in middle-aged ovariectomized (OVX) rats. Female rats were sham-operated (n = 39, 13/group) or OVX (n = 143, 13/group). Sham-control and OVX-control rats (n = 39) receiving no GTP were assigned for sample collection at baseline, 3, or 6 months. The remaining OVX rats (n = 104) were randomized to 0.15%, 0.5%, 1%, and 1.5% (g/dL) GTP for 3 or 6 months. Blood and bone samples were collected. Relative to the OVX-control group, GTP (1% and 1.5%) lowered serum procollagen type 1 N-terminal propeptide at 3 and 6 months, C-terminal telopeptides of type I collagen at 3 months, and insulin-like growth factor-I at 6 months. GTP did not affect bone mineral content and density. At 6 months, no dose of GTP positively affected trabecular bone volume based on microCT, but a higher cortical thickness and improved biomechanical properties of the femur mid-diaphysis was observed in the 1.5% GTP-treated group. At 3 and 6 months, GTP (0.5%, 1%, and 1.5%) had lower rates of trabecular bone formation and resorption than the OVX-control group, but the inhibitory effects of GTP on periosteal and endocortical bone mineralization and formation at the tibial midshaft were only evident at 3 months. GTP at higher doses suppressed bone turnover in the trabecular and cortical bone of OVX rats and resulted in improved cortical bone structural and biomechanical properties, although it was not effective in preventing the ovariectomy-induced dramatic cancellous bone loss.


Assuntos
Envelhecimento/fisiologia , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Polifenóis/farmacologia , Chá , Envelhecimento/efeitos dos fármacos , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Osso e Ossos/fisiologia , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/patologia , Ovariectomia , Polifenóis/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Chá/química
4.
Geroscience ; 45(2): 983-999, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36460774

RESUMO

SIRT3 is a longevity factor that acts as the primary deacetylase in mitochondria. Although ubiquitously expressed, previous global SIRT3 knockout studies have shown primarily a cardiac-specific phenotype. Here, we sought to determine how specifically knocking out SIRT3 in cardiomyocytes (SIRTcKO mice) temporally affects cardiac function and metabolism. Mice displayed an age-dependent increase in cardiac pathology, with 10-month-old mice exhibiting significant loss of systolic function, hypertrophy, and fibrosis. While mitochondrial function was maintained at 10 months, proteomics and metabolic phenotyping indicated SIRT3 hearts had increased reliance on glucose as an energy substrate. Additionally, there was a significant increase in branched-chain amino acids in SIRT3cKO hearts without concurrent increases in mTOR activity. Heavy water labeling experiments demonstrated that, by 3 months of age, there was an increase in protein synthesis that promoted hypertrophic growth with a potential loss of proteostasis in SIRT3cKO hearts. Cumulatively, these data show that the cardiomyocyte-specific loss of SIRT3 results in severe pathology with an accelerated aging phenotype.


Assuntos
Sirtuína 3 , Camundongos , Animais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Proteostase , Camundongos Knockout , Miócitos Cardíacos , Mitocôndrias/metabolismo
5.
Redox Biol ; 47: 102140, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560411

RESUMO

Diabetic cardiomyopathy is associated with an increase in oxidative stress. However, antioxidant therapy has shown a limited capacity to mitigate disease pathology. The molecular mechanisms responsible for the modulation of reactive oxygen species (ROS) production and clearance must be better defined. The objective of this study was to determine how insulin affects superoxide radical (O2•-) levels. O2•- production was evaluated in adult cardiomyocytes isolated from control and Akita (type 1 diabetic) mice by spin-trapping electron paramagnetic resonance spectroscopy. We found that the basal rates of O2•- production were comparable in control and Akita cardiomyocytes. However, culturing cardiomyocytes without insulin resulted in a significant increase in O2•- production only in the Akita group. In contrast, O2•- production was unaffected by high glucose and/or fatty acid supplementation. The increase in O2•- was due in part to a decrease in superoxide dismutase (SOD) activity. The PI3K inhibitor, LY294002, decreased Akita SOD activity when insulin was present, indicating that the modulation of antioxidant activity is through insulin signaling. The effect of insulin on mitochondrial O2•- production was evaluated in Akita mice that underwent a 1-week treatment of insulin. Mitochondria isolated from insulin-treated Akita mice produced less O2•- than vehicle-treated diabetic mice. Quantitative proteomics was performed on whole heart homogenates to determine how insulin affects antioxidant protein expression. Of 29 antioxidant enzymes quantified, thioredoxin 1 was the only one that was significantly enhanced by insulin treatment. In vitro analysis of thioredoxin 1 revealed a previously undescribed capacity of the enzyme to directly scavenge O2•-. These findings demonstrate that insulin has a role in mitigating cardiac oxidative stress in diabetes via regulation of endogenous antioxidant activity.


Assuntos
Antioxidantes , Diabetes Mellitus Experimental , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Insulina , Camundongos , Estresse Oxidativo , Fosfatidilinositol 3-Quinases
6.
PLoS One ; 15(8): e0231806, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32817622

RESUMO

The cAMP-dependent protein kinase (PKA) signaling pathway is the primary means by which the heart regulates moment-to-moment changes in contractility and metabolism. We have previously found that PKA signaling is dysfunctional in the diabetic heart, yet the underlying mechanisms are not fully understood. The objective of this study was to determine if decreased insulin signaling contributes to a dysfunctional PKA response. To do so, we isolated adult cardiomyocytes (ACMs) from wild type and Akita type 1 diabetic mice. ACMs were cultured in the presence or absence of insulin and PKA signaling was visualized by immunofluorescence microscopy using an antibody that recognizes proteins specifically phosphorylated by PKA. We found significant decreases in proteins phosphorylated by PKA in wild type ACMs cultured in the absence of insulin. PKA substrate phosphorylation was decreased in Akita ACMs, as compared to wild type, and unresponsive to the effects of insulin. The decrease in PKA signaling was observed regardless of whether the kinase was stimulated with a beta-agonist, a cell-permeable cAMP analog, or with phosphodiesterase inhibitors. PKA content was unaffected, suggesting that the decrease in PKA signaling may be occurring by the loss of specific PKA substrates. Phospho-specific antibodies were used to discern which potential substrates may be sensitive to the loss of insulin. Contractile proteins were phosphorylated similarly in wild type and Akita ACMs regardless of insulin. However, phosphorylation of the glycolytic regulator, PFK-2, was significantly decreased in an insulin-dependent manner in wild type ACMs and in an insulin-independent manner in Akita ACMs. These results demonstrate a defect in PKA activation in the diabetic heart, mediated in part by deficient insulin signaling, that results in an abnormal activation of a primary metabolic regulator.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Insulina/metabolismo , Insulina/farmacologia , Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/fisiologia , Inibidores de Fosfodiesterase/farmacologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos
7.
J Am Heart Assoc ; 6(12)2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203581

RESUMO

BACKGROUND: The healthy heart has a dynamic capacity to respond and adapt to changes in nutrient availability. Diabetes mellitus disrupts this metabolic flexibility and promotes cardiomyopathy through mechanisms that are not completely understood. Phosphofructokinase 2 (PFK-2) is a primary regulator of cardiac glycolysis and substrate selection, yet its regulation under normal and pathological conditions is unknown. This study was undertaken to determine how changes in insulin signaling affect PFK-2 content, activity, and cardiac metabolism. METHODS AND RESULTS: Streptozotocin-induced diabetes mellitus, high-fat diet feeding, and fasted mice were used to identify how decreased insulin signaling affects PFK-2 and cardiac metabolism. Primary adult cardiomyocytes were used to define the mechanisms that regulate PFK-2 degradation. Both type 1 diabetes mellitus and a high-fat diet induced a significant decrease in cardiac PFK-2 protein content without affecting its transcript levels. Overnight fasting also induced a decrease in PFK-2, suggesting it is rapidly degraded in the absence of insulin signaling. An unbiased metabolomic study demonstrated that decreased PFK-2 in fasted animals is accompanied by an increase in glycolytic intermediates upstream of phosphofructokianse-1, whereas those downstream are diminished. Mechanistic studies using cardiomyocytes showed that, in the absence of insulin signaling, PFK-2 is rapidly degraded via both proteasomal- and chaperone-mediated autophagy. CONCLUSIONS: The loss of PFK-2 content as a result of reduced insulin signaling impairs the capacity to dynamically regulate glycolysis and elevates the levels of early glycolytic intermediates. Although this may be beneficial in the fasted state to conserve systemic glucose, it represents a pathological impairment in diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 1/enzimologia , Cardiomiopatias Diabéticas/enzimologia , Glicólise , Insulina/sangue , Miocárdio/enzimologia , Fosfofrutoquinase-2/metabolismo , Animais , Autofagia , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/patologia , Cardiomiopatias Diabéticas/sangue , Cardiomiopatias Diabéticas/etiologia , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Regulação para Baixo , Estabilidade Enzimática , Jejum/sangue , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Miocárdio/patologia , Fosfofrutoquinase-2/genética , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais , Estreptozocina , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA