Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 143(5): 837-47, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21111241

RESUMO

Understanding the prevailing mutational mechanisms responsible for human genome structural variation requires uniformity in the discovery of allelic variants and precision in terms of breakpoint delineation. We develop a resource based on capillary end sequencing of 13.8 million fosmid clones from 17 human genomes and characterize the complete sequence of 1054 large structural variants corresponding to 589 deletions, 384 insertions, and 81 inversions. We analyze the 2081 breakpoint junctions and infer potential mechanism of origin. Three mechanisms account for the bulk of germline structural variation: microhomology-mediated processes involving short (2-20 bp) stretches of sequence (28%), nonallelic homologous recombination (22%), and L1 retrotransposition (19%). The high quality and long-range continuity of the sequence reveals more complex mutational mechanisms, including repeat-mediated inversions and gene conversion, that are most often missed by other methods, such as comparative genomic hybridization, single nucleotide polymorphism microarrays, and next-generation sequencing.


Assuntos
Genoma Humano , Variação Estrutural do Genoma , Mutação , Sequência de Bases , Conversão Gênica , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA
2.
Nature ; 453(7191): 56-64, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18451855

RESUMO

Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale--particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation--a standard for genotyping platforms and a prelude to future individual genome sequencing projects.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Mapeamento Físico do Cromossomo , Análise de Sequência de DNA , Inversão Cromossômica/genética , Eucromatina/genética , Deleção de Genes , Geografia , Haplótipos , Humanos , Mutagênese Insercional/genética , Polimorfismo de Nucleotídeo Único/genética , Grupos Raciais/genética , Reprodutibilidade dos Testes
3.
PLoS Genet ; 3(4): e63, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17447845

RESUMO

The APOBEC3 gene family plays a role in innate cellular immunity inhibiting retroviral infection, hepatitis B virus propagation, and the retrotransposition of endogenous elements. We present a detailed sequence and population genetic analysis of a 29.5-kb common human deletion polymorphism that removes the APOBEC3B gene. We developed a PCR-based genotyping assay, characterized 1,277 human diversity samples, and found that the frequency of the deletion allele varies significantly among major continental groups (global FST = 0.2843). The deletion is rare in Africans and Europeans (frequency of 0.9% and 6%), more common in East Asians and Amerindians (36.9% and 57.7%), and almost fixed in Oceanic populations (92.9%). Despite a worldwide frequency of 22.5%, analysis of data from the International HapMap Project reveals that no single existing tag single nucleotide polymorphism may serve as a surrogate for the deletion variant, emphasizing that without careful analysis its phenotypic impact may be overlooked in association studies. Application of haplotype-based tests for selection revealed potential pitfalls in the direct application of existing methods to the analysis of genomic structural variation. These data emphasize the importance of directly genotyping structural variation in association studies and of accurately resolving variant breakpoints before proceeding with more detailed population-genetic analysis.


Assuntos
Citidina Desaminase/genética , Deleção de Genes , Genética Populacional , Polimorfismo Genético , Frequência do Gene , Genótipo , Geografia , Homozigoto , Humanos , Desequilíbrio de Ligação , Antígenos de Histocompatibilidade Menor , Dados de Sequência Molecular
4.
Hum Mol Genet ; 15(7): 1159-67, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16497726

RESUMO

The contribution of large-scale and intermediate-size structural variation (ISV) to human genetic disease and disease susceptibility is only beginning to be understood. The development of high-throughput genotyping technologies is one of the most critical aspects for future studies of linkage disequilibrium (LD) and disease association. Using a simple PCR-based method designed to assay the junctions of the breakpoints, we genotyped seven simple insertion and deletion polymorphisms ranging in size from 6.3 to 24.7 kb among 90 CEPH individuals. We then extended this analysis to a larger collection of samples (n=460) by application of an oligonucleotide extension-ligation genotyping assay. The analysis showed a high level of concordance ( approximately 99%) when compared with PCR/sequence-validated genotypes. Using the available HapMap data, we observed significant LD (r2=0.74-0.95) between each ISV and flanking single nucleotide polymorphisms, but this observation is likely to hold only for similar simple insertion/deletion events. The approach we describe may be used to characterize a large number of individuals in a cost-effective manner once the sequence organization of ISVs is known.


Assuntos
Testes Genéticos/métodos , Genótipo , Estudos de Coortes , Feminino , Variação Genética , Humanos , Desequilíbrio de Ligação , Masculino , Análise em Microsséries , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
5.
Am J Hum Genet ; 79(2): 275-90, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16826518

RESUMO

Studies of copy-number variation and linkage disequilibrium (LD) have typically excluded complex regions of the genome that are rich in duplications and prone to rearrangement. In an attempt to assess the heritability and LD of copy-number polymorphisms (CNPs) in duplication-rich regions of the genome, we profiled copy-number variation in 130 putative "rearrangement hotspot regions" among 269 individuals of European, Yoruba, Chinese, and Japanese ancestry analyzed by the International HapMap Consortium. Eighty-four hotspot regions, corresponding to 257 bacterial artificial chromosome (BAC) probes, showed evidence of copy-number differences. Despite a predisposing genetic architecture, no polymorphism was ever observed in the remaining 46 "rearrangement hotspots," and we suggest these represent excellent candidate sites for pathogenic rearrangements. We used a combination of BAC-based and high-density customized oligonucleotide arrays to resolve the molecular basis of structural rearrangements. For common variants (frequency >10%), we observed a distinct bias against copy-number losses, suggesting that deletions are subject to purifying selection. Heritability estimates did not differ significantly from 1.0 among the majority (30 of 34) of loci analyzed, consistent with normal Mendelian inheritance. Some of the CNPs in duplication-rich regions showed strong LD with nearby single-nucleotide polymorphisms (SNPs) and were observed to segregate on ancestral SNP haplotypes. However, LD with the best available SNP markers was weaker than has been reported for deletion polymorphisms in less complex regions of the genome. These observations may be accounted for by a low density of SNP data in duplicated regions, challenges in mapping and typing the CNPs, and the possibility that CNPs in these regions have rearranged on multiple haplotype backgrounds. Our results underscore the need for complete maps of genetic variation in duplication-rich regions of the genome.


Assuntos
Dosagem de Genes , Duplicação Gênica , Genoma Humano , Desequilíbrio de Ligação , Polimorfismo Genético , Sequências Repetitivas de Ácido Nucleico , Rearranjo Gênico , Humanos , Polimorfismo de Nucleotídeo Único
6.
Genome Res ; 15(10): 1344-56, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16169929

RESUMO

Structural changes (deletions, insertions, and inversions) between human and chimpanzee genomes have likely had a significant impact on lineage-specific evolution because of their potential for dramatic and irreversible mutation. The low-quality nature of the current chimpanzee genome assembly precludes the reliable identification of many of these differences. To circumvent this, we applied a method to optimally map chimpanzee fosmid paired-end sequences against the human genome to systematically identify sites of structural variation > or = 12 kb between the two species. Our analysis yielded a total of 651 putative sites of chimpanzee deletion (n = 293), insertions (n = 184), and rearrangements consistent with local inversions between the two genomes (n = 174). We validated a subset (19/23) of insertion and deletions using PCR and Southern blot assays, confirming the accuracy of our method. The events are distributed throughout the genome on all chromosomes but are highly correlated with sites of segmental duplication in human and chimpanzee. These structural variants encompass at least 24 Mb of DNA and overlap with > 245 genes. Seventeen of these genes contain exons missing in the chimpanzee genomic sequence and also show a significant reduction in gene expression in chimpanzee. Compared with the pioneering work of Yunis, Prakash, Dutrillaux, and Lejeune, this analysis expands the number of potential rearrangements between chimpanzees and humans 50-fold. Furthermore, this work prioritizes regions for further finishing in the chimpanzee genome and provides a resource for interrogating functional differences between humans and chimpanzees.


Assuntos
Genoma , Pan troglodytes/genética , Animais , Coleta de Dados , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA