Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 15(4): 607-15, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15047065

RESUMO

Sodiated peptides are often generated by electrospray ionization (ESI) of solutions containing peptides and a sodium salt. Fragmentation of singly sodiated, singly charged peptide ions commonly provides specific sequence information. However, these ions may be difficult to form by directly electrospraying a mixture. In the application of a recently described technique for forming metal containing peptide ions in the gas phase, singly sodiated, singly charged ions are formed via cation-switching ion/ion reactions of multiply protonated peptides. Proton transfer ion/ion reactions can also be used to form [M + Na]+ through the reduction of charge states of multiply charged, singly sodiated ions. The specificity and flexibility of the techniques employed provide a highly controlled means of generating sodiated peptide and protein ions. Thus, the methodologies presented here have potential for forming ions not readily observed via ESI or MALDI. Furthermore, the use of ion/ion reactions to form sodiated peptides facilitates direct comparisons of the fragmentation behavior of [M + Na]+ peptides formed in the absence of solvent with that of [M + Na]+ peptides generated by directly electrospraying a sodium salt/peptide mixture. Thus, in addition to descriptions of the formation of [M + Na]+ peptides in the gas phase using ion/ion reactions, results from CID of reaction products are presented herein.


Assuntos
Gases/química , Peptídeos/química , Sódio/química , Sequência de Aminoácidos , Cátions/química , Espectrometria de Massas , Dados de Sequência Molecular
2.
J Phys Chem A ; 109(16): 3608-16, 2005 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16568152

RESUMO

Gas-phase reactions of multiply protonated polypeptides and metal containing anions represent a new methodology for manipulating the cationizing agent composition of polypeptides. This approach affords greater flexibility in forming metal containing ions than commonly used methods, such as electrospray ionization of a metal salt/peptide mixture and matrix-assisted laser desorption. Here, the effects of properties of the polypeptide and anionic reactant on the nature of the reaction products are investigated. For a given metal, the identity of the ligand in the metal containing anion is the dominant factor in determining product distributions. For a given polypeptide ion, the difference between the metal ion affinity and the proton affinity of the negatively charged ligand in the anionic reactant is of predictive value in anticipating the relative contributions of proton transfer and metal ion transfer. Furthermore, the binding strength of the ligand anion to charge sites in the polypeptide correlates with the extent of observed cluster ion formation. Polypeptide composition, sequence, and charge state can also play a notable role in determining the distribution of products. In addition to their usefulness in gas-phase ion synthesis strategies, the reactions of protonated polypeptides and metal containing anions represent an example of a gas-phase ion/ion reaction that is sensitive to polypeptide structure. These observations are noteworthy in that they allude to the possibility of obtaining information, without requiring fragmentation of the peptide backbone, about ion structure as well as the relative ion affinities associated with the reactants.


Assuntos
Metais/química , Peptídeos/química , Animais , Ânions , Bradicinina/química , Cátions , Bovinos , Íons , Ligantes , Modelos Químicos , Nitrato de Prata/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ubiquitina/química
3.
J Am Chem Soc ; 125(41): 12404-5, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-14531672

RESUMO

Polypeptide ions comprising different cationizing agents show distinct fragmentation behavior in the gas phase. Thus, it is desirable to be able to form ions with different cationizing agents such as protons and metal ions. Usually, metal-cationized peptide/protein ions are introduced to the mass spectrometer by electrospraying solutions containing a mixture of the peptide/protein of interest and a metal salt. A new technique for generating metal-containing polypeptide ions that involves gas-phase ion/ion reactions is described. In this strategy, solutions of metal-containing ions and solutions of proteins are each electrosprayed into separate ion sources. The approach allows for independent maximization of ion signal and selection of ions prior to gas-phase reactions. Selected ions are stored in a quadrupole ion trap where reactions of ions of opposite polarity form metal-cationized peptides and proteins in the gas phase by cation switching. This approach affords a high degree of flexibility in forming metal-containing peptide and protein ions via the ability to mass-select reactant ions. The ability to form a variety of peptide/protein ions with various cationizing reagents in the gas phase is attractive both for the study of intrinsic interactions of metal ions with polypeptides and for maximizing the structural information available from tandem mass spectrometry of peptides and proteins.


Assuntos
Peptídeos/química , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Acetatos/química , Cátions/química , Gases , Metais/química , Neurotensina/química , Ubiquitina/química
4.
Anal Chem ; 76(3): 720-7, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14750868

RESUMO

A protein mixture derived from a whole cell lysate fraction of Saccharomyces cerevisiae, which contains roughly 19 proteins, has been analyzed to identify an a priori unknown modified protein using a quadrupole ion trap tandem mass spectrometer. Collection of the experimental data was facilitated by collision-induced dissociation and ion/ion proton-transfer reactions in multistage mass spectrometry procedures. Ion/ion reactions were used to manipulate charge states of both parent ions and product ions for the purpose of concentrating charge into the parent ion of interest and to reduce the product ion charge states for determination of product ion mass and abundance. The identification of the protein was achieved by matching the uninterpreted product ion spectrum against protein sequence databases with varying degrees of annotation, coupled with a scoring scheme weighted for the relative abundances of the experimentally observed product ions and the frequency of fragmentations occurring at preferential sites. The protein was identified to be an acetylated yeast heat shock protein, HS12_Yeast (11.6 kDa), with the initiating methionine residue removed. This constitutes the first example of the identification of an a priori unknown protein that is not present in an annotated protein database using a "top-down" approach with a quadrupole ion trap. This example illustrates the utility of relatively low cost instrumentation with modest mass analysis characteristics for the identification of modified proteins without recourse to enzymatic digestion. It also illustrates how experimental data can be used interactively with protein databases when the modified protein of interest is not initially present in the database.


Assuntos
Proteínas de Saccharomyces cerevisiae/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Bases de Dados de Proteínas , Íons/química , Dados de Sequência Molecular , Saccharomyces cerevisiae/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação
5.
J Proteome Res ; 3(5): 1033-41, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15473693

RESUMO

Expanded understanding of the factors that direct polypeptide ion fragmentation can lead to improved specificity in the use of tandem mass spectrometry for the identification and characterization of proteins. Like the fragmentation of peptide cations, the dissociation of whole protein cations shows several preferred cleavages, the likelihood for which is parent ion charge dependent. While such cleavages are often observed, they are far from universally observed, despite the presence of the residues known to promote them. Furthermore, cleavages at residues not noted to be common in a variety of proteins can be dominant for a particular protein or protein ion charge state. Motivated by the ability to study a small protein, turkey ovomucoid third domain, for which a variety of single amino acid variants are available, the effects of changing the identity of one amino acid in the protein sequence on its dissociation behavior were examined. In particular, changes in amino acids associated with C-terminal aspartic acid cleavage and N-terminal proline cleavage were emphasized. Consistent with previous studies, the product ion spectra were found to be dependent upon the parent ion charge state. Furthermore, the fraction of possible C-terminal aspartic acid cleavages observed to occur for this protein was significantly larger than the fraction of possible N-terminal proline cleavages. In fact, very little N-terminal proline cleavage was noted for the wild-type protein despite the presence of three proline residues in the protein. The addition/removal of proline and aspartic acids was studied along with changes in selected residues adjacent to proline residues. Evidence for inhibition of proline cleavage by the presence of nearby basic residues was noted, particularly if the basic residue was likely to be protonated.


Assuntos
Substituição de Aminoácidos , Espectrometria de Massas , Ovomucina/química , Sequência de Aminoácidos , Animais , Arginina/química , Ácido Aspártico/química , Histidina/química , Lisina/química , Dados de Sequência Molecular , Ovomucina/genética , Oxirredução , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Prolina/química , Proteínas Recombinantes/química , Perus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA