RESUMO
Influenza pandemics can spread quickly and cost millions of lives; the 2009 H1N1 pandemic highlighted the shortfall in the current vaccine strategy and the need for an improved global response in terms of shortening the time required to manufacture the vaccine and increasing production capacity. Here we describe the pre-clinical assessment of a novel 2009 H1N1 pandemic influenza vaccine based on the E. coli-produced HA globular head domain covalently linked to virus-like particles derived from the bacteriophage Qß. When formulated with alum adjuvant and used to immunize mice, dose finding studies found that a 10 µg dose of this vaccine (3.7 µg globular HA content) induced antibody titers comparable to a 1.5 µg dose (0.7 µg globular HA content) of the licensed 2009 H1N1 pandemic vaccine Panvax, and significantly reduced viral titers in the lung following challenge with 2009 H1N1 pandemic influenza A/California/07/2009 virus. While Panvax failed to induce marked T cell responses, the novel vaccine stimulated substantial antigen-specific interferon-γ production in splenocytes from immunized mice, alongside enhanced IgG2a antibody production. In ferrets the vaccine elicited neutralizing antibodies, and following challenge with influenza A/California/07/2009 virus reduced morbidity and lowered viral titers in nasal lavages.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Células Th1/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Adjuvantes Imunológicos , Compostos de Alúmen , Animais , Especificidade de Anticorpos , Bacteriófagos/imunologia , Escherichia coli/genética , Escherichia coli/imunologia , Feminino , Furões/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunoglobulina G/imunologia , Interferon gama/biossíntese , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , RNA Bacteriano/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/metabolismoRESUMO
High dimensional flow cytometry is best served by centralized facilities. However, the difficulties around sample processing, storage and shipment make large scale international studies impractical. We therefore sought to identify optimized fixation procedures which fully leverage the analytical capability of high dimensional flow cytometry without the need for complex cell processing or a sustained cold chain. Whole blood staining procedure was employed to investigate the applicability of fixatives including Cyto-Chex® Blood Collection tube (Streck), Transfix® (Cytomark), 1% and 4% paraformaldehyde to centralized analysis of field trial samples. Samples were subjected to environmental conditions which mimic field studies, without refrigerated shipment and analyzed across 10 days, based on cell count and marker expression. This study showed that Cyto-Chex® demonstrated the least variability in absolute cell count relative to samples analyzed directly from donors in the absence of fixation. Transfix® was better at preserving the marker expression among all fixatives. However, Transfix® caused marked increased cell membrane permeabilization and was detrimental to intracellular marker identification. Paraformaldehyde fixation, at either 1% or 4% concentrations, was unfavorable for cell preservation under the conditions tested and thus not recommended. Using these data, we have created an online interactive tool which enables researchers to evaluate the impact of different fixatives on their panel of interest. In this study, we have identified Cyto-Chex® as the optimal cellular preservative for high dimensional flow cytometry in large scale studies for shipped whole blood samples, even in the absence of a sustained cold chain.