Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
medRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425955

RESUMO

Yellow fever virus (YFV) infections can cause severe disease manifestations, including hepatic injury, endothelial damage, coagulopathy, hemorrhage, systemic organ failure, and shock, and are associated with high mortality in humans. While nonstructural protein 1 (NS1) of the related dengue virus is implicated in contributing to vascular leak, little is known about the role of YFV NS1 in severe YF and mechanisms of vascular dysfunction in YFV infections. Here, using serum samples from qRT-PCR-confirmed YF patients with severe (n=39) or non-severe (n=18) disease in a well-defined hospital cohort in Brazil, plus samples from healthy uninfected controls (n=11), we investigated factors associated with disease severity. We developed a quantitative YFV NS1 capture ELISA and found significantly increased levels of NS1, as well as syndecan-1, a marker of vascular leak, in serum from severe YF as compared to non-severe YF or control groups. We also showed that hyperpermeability of endothelial cell monolayers treated with serum from severe YF patients was significantly higher compared to non-severe YF and control groups as measured by transendothelial electrical resistance (TEER). Further, we demonstrated that YFV NS1 induces shedding of syndecan-1 from the surface of human endothelial cells. Notably, YFV NS1 serum levels significantly correlated with syndecan-1 serum levels and TEER values. Syndecan-1 levels also significantly correlated with clinical laboratory parameters of disease severity, viral load, hospitalization, and death. In summary, this study points to a role for secreted NS1 in YF disease severity and provides evidence for endothelial dysfunction as a mechanism of YF pathogenesis in humans.

2.
J Med Entomol ; 45(2): 260-6, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18402142

RESUMO

The spread of insecticide resistance genes in Anopheles gambiae Giles sensu stricto threatens to compromise vector-based malaria control programs. Two mutations at the same locus in the voltage-gated sodium channel gene are known to confer knockdown resistance (kdr) to pyrethroids and DDT. Kdr-e involves a leucine-serine substitution, and it was until recently thought to be restricted to East Africa, whereas kdr-w, which involves a leucine-phenylalanine substitution, is associated with resistance in West Africa. In this study, we analyze the frequency and relationship between the kdr genotypes and resistance to type I and type II pyrethroids and DDT by using WHO test kits in both the Forest-M and S molecular forms of An. gambiae in Cameroon. Both kdr-w and kdr-e polymorphisms were found in sympatric An. gambiae, and in many cases in the same mosquito. Kdr-e and kdr-w were detected in both forms, but they were predominant in the S form. Both kdr-e and kdr-w were closely associated with resistance to DDT and weakly associated with resistance to type II pyrethroids. Kdr-w conferred greater resistance to permethrin than kdr-e. We also describe a modified diagnostic designed to detect both resistant alleles simultaneously.


Assuntos
Anopheles/genética , DDT , Inseticidas , Piretrinas , Canais de Sódio/genética , Alelos , Animais , Camarões , Frequência do Gene , Resistência a Inseticidas/genética
3.
Neural Dev ; 13(1): 4, 2018 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-29573745

RESUMO

BACKGROUND: Activity in neurons drives afferent competition that is critical for the refinement of nascent neural circuits. In ferrets, when an eye is lost in early development, surviving retinogeniculate afferents from the spared eye spread across the thalamus in a manner that is dependent on spontaneous retinal activity. However, how this spontaneous activity, also known as retinal waves, might dynamically regulate afferent terminal targeting remains unknown. METHODS: We recorded retinal waves from retinae ex vivo using multi-electrode arrays. Retinae came from ferrets who were binocular or who had one eye surgically removed at birth. Linear mixed effects models were used to investigate the effects of early monocular enucleation on retinal wave activity. RESULTS: When an eye is removed at birth, spontaneous bursts of action potentials by retinal ganglion cells (RGCs) in the surviving eye are shorter in duration. The shortening of RGC burst duration results in decreased pairwise RGC correlations across the retina and is associated with the retinal wave-dependent spread of retinogeniculate afferents previously reported in enucleates. CONCLUSION: Our findings show that removal of the competing eye modulates retinal waves and could underlie the dynamic regulation of competition-based refinement during retinogeniculate development.


Assuntos
Enucleação Ocular , Lateralidade Funcional/fisiologia , Potenciais da Membrana/fisiologia , Retina/citologia , Retina/crescimento & desenvolvimento , Células Ganglionares da Retina/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Furões , Masculino , Microeletrodos , Estatística como Assunto , Vias Visuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA