Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 158(4): 916-928, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25126794

RESUMO

A central problem in biology is to identify gene function. One approach is to infer function in large supergenomic networks of interactions and ancestral relationships among genes; however, their analysis can be computationally prohibitive. We show here that these biological networks are compressible. They can be shrunk dramatically by eliminating redundant evolutionary relationships, and this process is efficient because in these networks the number of compressible elements rises linearly rather than exponentially as in other complex networks. Compression enables global network analysis to computationally harness hundreds of interconnected genomes and to produce functional predictions. As a demonstration, we show that the essential, but functionally uncharacterized Plasmodium falciparum antigen EXP1 is a membrane glutathione S-transferase. EXP1 efficiently degrades cytotoxic hematin, is potently inhibited by artesunate, and is associated with artesunate metabolism and susceptibility in drug-pressured malaria parasites. These data implicate EXP1 in the mode of action of a frontline antimalarial drug.


Assuntos
Antígenos de Protozoários/isolamento & purificação , Compressão de Dados , Genômica/métodos , Plasmodium falciparum/enzimologia , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Antimaláricos/farmacologia , Artemisininas/farmacologia , Artesunato , Domínio Catalítico , Hemina/metabolismo , Modelos Genéticos , Plasmodium falciparum/genética
2.
Bioorg Med Chem Lett ; 94: 129458, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37634761

RESUMO

Malaria continues to be a major burden on global health, responsible for 619,000 deaths in 2021. The causative agent of malaria is the eukaryotic parasite Plasmodium. Resistance to artemisinin-based combination therapies (ACTs), the current first-line treatment for malaria, has emerged in Asia, South America, and more recently Africa, where >90% of all malaria-related deaths occur. This has necessitated the identification and investigation of novel parasite proteins and pathways as antimalarial targets, including components of the ubiquitin proteasome system. Here, we investigate Plasmodium falciparum deubiquitinase ubiquitin C-terminal hydrolase L3 (PfUCHL3) as one such target. We carried out a high-throughput screen with covalent fragments and identified seven scaffolds that selectively inhibit the plasmodial UCHL3, but not human UCHL3 or the closely related human UCHL1. After assessing toxicity in human cells, we identified four promising hits and demonstrated their efficacy against asexual P. falciparum blood stages and P. berghei sporozoite stages.


Assuntos
Antimaláricos , Enzimas Desubiquitinantes , Antagonistas do Ácido Fólico , Antimaláricos/farmacologia , Eucariotos , Plasmodium falciparum , Complexo de Endopeptidases do Proteassoma , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/química , Proteínas de Protozoários
3.
PLoS Pathog ; 15(6): e1007722, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170268

RESUMO

Therapeutics with novel modes of action and a low risk of generating resistance are urgently needed to combat drug-resistant Plasmodium falciparum malaria. Here, we report that the peptide vinyl sulfones WLL-vs (WLL) and WLW-vs (WLW), highly selective covalent inhibitors of the P. falciparum proteasome, potently eliminate genetically diverse parasites, including K13-mutant, artemisinin-resistant lines, and are particularly active against ring-stage parasites. Selection studies reveal that parasites do not readily acquire resistance to WLL or WLW and that mutations in the ß2, ß5 or ß6 subunits of the 20S proteasome core particle or in components of the 19S proteasome regulatory particle yield only hundred-fold decreases in susceptibility. We observed no cross-resistance between WLL and WLW. Moreover, most mutations that conferred a modest loss of parasite susceptibility to one inhibitor significantly increased sensitivity to the other. These inhibitors potently synergized multiple chemically diverse classes of antimalarial agents, implicating a shared disruption of proteostasis in their modes of action. These results underscore the potential of targeting the Plasmodium proteasome with covalent small molecule inhibitors as a means of combating multidrug-resistant malaria.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteínas de Protozoários , Antimaláricos/química , Resistência a Medicamentos/genética , Sinergismo Farmacológico , Humanos , Plasmodium falciparum/genética , Inibidores de Proteassoma/química , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
4.
J Am Chem Soc ; 140(36): 11424-11437, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30107725

RESUMO

The Plasmodium proteasome is an emerging antimalarial target due to its essential role in all the major life cycle stages of the parasite and its contribution to the establishment of resistance to artemisinin (ART)-based therapies. However, because of a similarly essential role for the host proteasome, the key property of any antiproteasome therapeutic is selectivity. Several parasite-specific proteasome inhibitors have recently been reported, however, their selectivity must be improved to enable clinical development. Here we describe screening of diverse libraries of non-natural synthetic fluorogenic substrates to identify determinants at multiple positions on the substrate that produce enhanced selectivity. We find that selection of an optimal electrophilic "warhead" is essential to enable high selectivity that is driven by the peptide binding elements on the inhibitor. We also find that host cell toxicity is dictated by the extent of coinhibition of the human ß2 and ß5 subunits. Using this information, we identify compounds with over 3 orders of magnitude selectivity for the parasite enzyme. Optimization of the pharmacological properties resulted in molecules that retained high potency and selectivity, were soluble, sufficiently metabolically stable and orally bioavailable. These molecules are highly synergistic with ART and can clear parasites in a mouse model of infection, making them promising leads as antimalarial drugs.


Assuntos
Artemisininas/farmacologia , Plasmodium falciparum/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Artemisininas/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Inibidores de Proteassoma/química , Relação Estrutura-Atividade
5.
Mol Microbiol ; 101(3): 381-93, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27073104

RESUMO

Emerging resistance to first-line antimalarial combination therapies threatens malaria treatment and the global elimination campaign. Improved therapeutic strategies are required to protect existing drugs and enhance treatment efficacy. We report that the piperazine-containing compound ACT-451840 exhibits single-digit nanomolar inhibition of the Plasmodium falciparum asexual blood stages and transmissible gametocyte forms. Genome sequence analyses of in vitro-derived ACT-451840-resistant parasites revealed single nucleotide polymorphisms in pfmdr1, which encodes a digestive vacuole membrane-bound ATP-binding cassette transporter known to alter P. falciparum susceptibility to multiple first-line antimalarials. CRISPR-Cas9 based gene editing confirmed that PfMDR1 point mutations mediated ACT-451840 resistance. Resistant parasites demonstrated increased susceptibility to the clinical drugs lumefantrine, mefloquine, quinine and amodiaquine. Stage V gametocytes harboring Cas9-introduced pfmdr1 mutations also acquired ACT-451840 resistance. These findings reveal that PfMDR1 mutations can impart resistance to compounds active against asexual blood stages and mature gametocytes. Exploiting PfMDR1 resistance mechanisms provides new opportunities for developing disease-relieving and transmission-blocking antimalarials.


Assuntos
Acrilamidas/farmacologia , Antimaláricos/farmacologia , Artemisininas/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Piperazinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Resistência a Medicamentos , Sinergismo Farmacológico , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/metabolismo , Mutação Puntual , Polimorfismo de Nucleotídeo Único
6.
PLoS Med ; 13(10): e1002138, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27701420

RESUMO

BACKGROUND: Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. METHOD AND FINDINGS: The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3-4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11-16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23-39). The compound's preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as survival) in relation to area under the concentration versus time curve (AUC), maximum observed plasma concentration (Cmax), and time above a threshold concentration. The determination of the dose-efficacy relationship of ACT-451840 under curative conditions in rodent malaria models allowed prediction of the human efficacious exposure. CONCLUSION: The dual activity of ACT-451840 against asexual and sexual stages of P. falciparum and the activity on P. vivax have the potential to meet the specific profile of a target compound that could replace the fast-acting artemisinin component and harbor additional gametocytocidal activity and, thereby, transmission-blocking properties. The fast parasite reduction ratio (PRR) and gametocytocidal effect of ACT-451840 were recently also confirmed in a clinical proof-of-concept (POC) study.


Assuntos
Acrilamidas/farmacologia , Antimaláricos/farmacologia , Piperazinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Acrilamidas/farmacocinética , Animais , Antimaláricos/farmacocinética , Artemisininas/farmacologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Piperazinas/farmacocinética , Plasmodium berghei/efeitos dos fármacos
7.
J Biol Chem ; 288(31): 22576-83, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23754276

RESUMO

A representative of a new class of potent antimalarials with an unknown mode of action was recently described. To identify the molecular target of this class of antimalarials, we employed a photo-reactive affinity capture method to find parasite proteins specifically interacting with the capture compound in living parasitized cells. The capture reagent retained the antimalarial properties of the parent molecule (ACT-213615) and accumulated within parasites. We identified several proteins interacting with the capture compound and established a functional interaction between ACT-213615 and PfMDR1. We surmise that PfMDR1 may play a role in the antimalarial activity of the piperazine-containing compound ACT-213615.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Antimaláricos/farmacologia , Plasmodium falciparum/fisiologia , Raios Ultravioleta , Animais
8.
Cell Rep Methods ; 3(7): 100516, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37533635

RESUMO

In 2021, Plasmodium falciparum was responsible for 619,000 reported malaria-related deaths. Resistance has been detected to every clinically used antimalarial, urging the development of novel antimalarials with uncompromised mechanisms of actions. High-content imaging allows researchers to collect and quantify numerous phenotypic properties at the single-cell level, and machine learning-based approaches enable automated classification and clustering of cell populations. By combining these technologies, we developed a method capable of robustly differentiating and quantifying P. falciparum asexual blood stages. These phenotypic properties also allow for the quantification of changes in parasite morphology. Here, we demonstrate that our analysis can be used to quantify schizont nuclei, a phenotype that previously had to be enumerated manually. By monitoring stage progression and quantifying parasite phenotypes, our method can discern stage specificity of new compounds, thus providing insight into the compound's mode of action.


Assuntos
Antimaláricos , Parasitos , Animais , Antimaláricos/farmacologia , Plasmodium falciparum , Esquizontes
9.
Cell Chem Biol ; 30(5): 470-485.e6, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36963402

RESUMO

The Plasmodium falciparum proteasome constitutes a promising antimalarial target, with multiple chemotypes potently and selectively inhibiting parasite proliferation and synergizing with the first-line artemisinin drugs, including against artemisinin-resistant parasites. We compared resistance profiles of vinyl sulfone, epoxyketone, macrocyclic peptide, and asparagine ethylenediamine inhibitors and report that the vinyl sulfones were potent even against mutant parasites resistant to other proteasome inhibitors and did not readily select for resistance, particularly WLL that displays covalent and irreversible binding to the catalytic ß2 and ß5 proteasome subunits. We also observed instances of collateral hypersensitivity, whereby resistance to one inhibitor could sensitize parasites to distinct chemotypes. Proteasome selectivity was confirmed using CRISPR/Cas9-edited mutant and conditional knockdown parasites. Molecular modeling of proteasome mutations suggested spatial contraction of the ß5 P1 binding pocket, compromising compound binding. Dual targeting of P. falciparum proteasome subunits using covalent inhibitors provides a potential strategy for restoring artemisinin activity and combating the spread of drug-resistant malaria.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Plasmodium , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Plasmodium/metabolismo , Artemisininas/química , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/química
10.
Exp Cell Res ; 316(13): 2113-22, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20430023

RESUMO

ER quality control consists of monitoring protein folding and targeting misfolded proteins for proteasomal degradation. ER stress results in an unfolded protein response (UPR) that selectively upregulates proteins involved in protein degradation, ER expansion, and protein folding. Given the efficiency in which misfolded proteins are degraded, there likely exist cellular factors that enhance the export of proteins across the ER membrane. We have reported that translocating chain-associated membrane protein 1 (TRAM1), an ER-resident membrane protein, participates in HCMV US2- and US11-mediated dislocation of MHC class I heavy chains (Oresic, K., Ng, C.L., and Tortorella, D. 2009). Consistent with the hypothesis that TRAM1 is involved in the disposal of misfolded ER proteins, cells lacking TRAM1 experienced a heightened UPR upon acute ER stress, as evidenced by increased activation of unfolded protein response elements (UPRE) and elevated levels of NF-kappaB activity. We have also extended the involvement of TRAM1 in the selective degradation of misfolded ER membrane proteins Cln6(M241T) and US2, but not the soluble degradation substrate alpha(1)-antitrypsin null(HK). These degradation model systems support the paradigm that TRAM1 is a selective factor that can enhance the dislocation of ER membrane proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , alfa 1-Antitripsina/metabolismo , Western Blotting , Células Cultivadas , Humanos , Rim/citologia , Rim/metabolismo , Luciferases/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transporte Proteico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Resposta a Proteínas não Dobradas/fisiologia
11.
ACS Infect Dis ; 7(7): 1923-1931, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33971094

RESUMO

Artemisinin-based combination therapies (ACTs), the World Health Organization-recommended first-line therapy for uncomplicated falciparum malaria, has led to significant decreases in malaria-associated morbidity and mortality in the past two decades. Decreased therapeutic efficacy of artemisinins, the cornerstone of ACTs, is threatening the gains made against this disease. As such, novel therapeutics with uncompromised mechanisms of action are needed to combat parasite-mediated antimalarial resistance. We have previously reported the antimalarial activity of Plasmodium falciparum-specific proteasome inhibitors in conjunction with a variety of antimalarials in clinical use or in preclinical investigations and of proteasome mutants generated in response to these inhibitors. Here, we discover that despite harboring K13C580Y, which has conventionally mediated artemisinin resistance in vitro as measured by increased survival in ring-stage survival assays (RSA), the Cam3.II strain parasites of Cambodian origin that have acquired an additional mutation in the proteasome display increased susceptibility to DHA and OZ439. This discovery implicates the proteasome in peroxide susceptibilities and has favorable implications on the use of peroxide and proteasome inhibitor combination therapy for the treatment of artemisinin-resistant malaria.


Assuntos
Antimaláricos , Plasmodium falciparum , Complexo de Endopeptidases do Proteassoma , Antimaláricos/farmacologia , Resistência a Medicamentos , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas de Protozoários/genética
12.
ACS Pharmacol Transl Sci ; 4(2): 613-623, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33855275

RESUMO

The coronavirus disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 116 million individuals globally and resulted in over 2.5 million deaths since the first report in December 2019. For most of this time, healthcare professionals have had few tools at their disposal. In December 2020, several vaccines that were shown to be highly effective have been granted emergency use authorization (EUA). Despite these remarkable breakthroughs, challenges include vaccine roll-out and implementation, in addition to deeply entrenched antivaccination viewpoints. While vaccines will prevent disease occurrence, infected individuals still need treatment options, and repurposing drugs circumvents the lengthy and costly process of drug development. SARS-CoV-2, like many other enveloped viruses, require the action of host proteases for entry. In addition, this novel virus employs a unique method of cell exit of deacidified lysosomes and exocytosis. Thus, inhibitors of lysosomes or other players in this pathway are good candidates to target SARS-CoV-2. Chemical compounds in the quinoline class are known to be lysomotropic and perturb pH levels. A large number of quinolines are FDA-approved for treatment of inflammatory diseases and antimalarials. Artemisinins are another class of drugs that have been demonstrated to be safe for use in humans and are widely utilized as antimalarials. In this Review, we discuss the use of antimalarial drugs in the class of quinolines and artemisinins, which have been shown to be effective against SARS-CoV-2 in vitro and in vivo, and provide a rationale in employing quinolines as treatment of SARS-CoV-2 in clinical settings.

13.
Transbound Emerg Dis ; 68(4): 1868-1885, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33128861

RESUMO

Emerging and re-emerging viral diseases can create devastating effects on human lives and may also lead to economic crises. The ongoing COVID-19 pandemic due to the novel coronavirus (nCoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China, has caused a global public health emergency. To date, the molecular mechanism of transmission of SARS-CoV-2, its clinical manifestations and pathogenesis is not completely understood. The global scientific community has intensified its efforts in understanding the biology of SARS-CoV-2 for development of vaccines and therapeutic interventions to prevent the rapid spread of the virus and to control mortality and morbidity associated with COVID-19. To understand the pathophysiology of SARS-CoV-2, appropriate animal models that mimic the biology of human SARS-CoV-2 infection are urgently needed. In this review, we outline animal models that have been used to study previous human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory syndrome coronavirus (MERS-CoV). Importantly, we discuss models that are appropriate for SARS-CoV-2 as well as the advantages and disadvantages of various available methods.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , COVID-19/veterinária , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio , Modelos Animais , Pandemias , SARS-CoV-2
14.
ACS Infect Dis ; 6(7): 1599-1614, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32324369

RESUMO

Despite a significant decline in morbidity and mortality over the last two decades, in 2018 there were 228 million reported cases of malaria and 405000 malaria-related deaths. Artemisinin, the cornerstone of artemisinin-based combination therapies, is the most potent drug in the antimalarial armamentarium against falciparum malaria. Heme-mediated activation of artemisinin and its derivatives results in widespread parasite protein alkylation, which is thought to lead to parasite death. Alarmingly, cases of decreased artemisinin efficacy have been widely detected across Cambodia and in neighboring countries, and a few cases have been reported in the Guiana Shield, India, and Africa. The grim prospect of widespread artemisinin resistance propelled a concerted effort to understand the mechanisms of artemisinin action and resistance. The identification of genetic markers and the knowledge of molecular mechanisms underpinning artemisinin resistance allow prospective surveillance and inform future drug development strategies, respectively. Here, we highlight recent advances in our understanding of how parasite vesicle trafficking, hemoglobin digestion, and cell stress responses contribute to artemisinin resistance.


Assuntos
Antimaláricos , Artemisininas , Parasitos , Animais , Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Heme , Plasmodium falciparum/genética , Estudos Prospectivos
15.
J Mol Med (Berl) ; 98(10): 1369-1383, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808094

RESUMO

Occasional zoonotic viral attacks on immunologically naive populations result in massive death tolls that are capable of threatening human survival. Currently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the infectious agent that causes coronavirus disease (COVID-19), has spread from its epicenter in Wuhan China to all parts of the globe. Real-time mapping of new infections across the globe has revealed that variable transmission patterns and pathogenicity are associated with differences in SARS-CoV-2 lineages, clades, and strains. Thus, we reviewed how changes in the SARS-CoV-2 genome and its structural architecture affect viral replication, immune evasion, and transmission within different human populations. We also looked at which immune dominant regions of SARS-CoV-2 and other coronaviruses are recognized by Major Histocompatibility Complex (MHC)/Human Leukocyte Antigens (HLA) genes and how this could impact on subsequent disease pathogenesis. Efforts were also placed on understanding immunological changes that occur when exposed individuals either remain asymptomatic or fail to control the virus and later develop systemic complications. Published autopsy studies that reveal alterations in the lung immune microenvironment, morphological, and pathological changes are also explored within the context of the review. Understanding the true correlates of protection and determining how constant virus evolution impacts on host-pathogen interactions could help identify which populations are at high risk and later inform future vaccine and therapeutic interventions.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/epidemiologia , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune/imunologia , Pneumonia Viral/epidemiologia , Replicação Viral/imunologia , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Humanos , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , SARS-CoV-2
16.
Methods Mol Biol ; 2013: 123-140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31267498

RESUMO

Malaria continues to be a global health burden, threatening over 40% of the world's population. Drug resistance in Plasmodium falciparum, the etiological agent of the majority of human malaria cases, is compromising elimination efforts. New approaches to treating drug-resistant malaria benefit from defining resistance liabilities of known antimalarial agents and compounds in development and defining genetic changes that mediate loss of parasite susceptibility. Here, we present protocols for in vitro selection of drug-resistant parasites and for site-directed gene editing of candidate resistance mediators to test for causality.


Assuntos
Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Plasmodium falciparum/patogenicidade , Animais , Antimaláricos/uso terapêutico , Sistemas CRISPR-Cas/genética , Edição de Genes , Humanos , Plasmodium falciparum/efeitos dos fármacos
17.
ACS Infect Dis ; 5(1): 90-101, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30375858

RESUMO

Malaria is one of the most challenging human infectious diseases, and both prevention and control have been hindered by the development of Plasmodium falciparum resistance to existing therapies. Several new compounds with novel mechanisms are in clinical development for the treatment of malaria, including DSM265, an inhibitor of Plasmodium dihydroorotate dehydrogenase. To explore the mechanisms by which resistance might develop to DSM265 in the field, we selected for DSM265-resistant P. falciparum parasites in vitro. Any of five different amino acid changes led to reduced efficacy on the parasite and to decreased DSM265 binding to P. falciparum DHODH. The DSM265-resistant parasites retained full sensitivity to atovaquone. All but one of the observed mutations were in the DSM265 binding site, and the remaining C276F was in the adjacent flavin cofactor site. The C276F mutation was previously identified in a recrudescent parasite during a Phase IIa clinical study. We confirmed that this mutation (and the related C276Y) accounted for the full level of observed DSM265 resistance by regenerating the mutation using CRISPR/Cas9 genome editing. X-ray structure analysis of the C276F mutant enzyme showed that conformational changes of nearby residues were required to accommodate the larger F276 residue, which in turn led to a restriction in the size of the DSM265 binding pocket. These findings underscore the importance of developing DSM265 as part of a combination therapy with other agents for successful use against malaria.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Mutação Puntual , Pirimidinas/farmacologia , Triazóis/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sistemas CRISPR-Cas , Cristalografia por Raios X , Di-Hidro-Orotato Desidrogenase , Edição de Genes , Humanos , Malária Falciparum , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Plasmodium falciparum/enzimologia
18.
Lancet Infect Dis ; 18(8): 874-883, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29909069

RESUMO

BACKGROUND: DSM265 is a novel, long-duration inhibitor of plasmodium dihydroorotate dehydrogenase (DHODH) with excellent selectivity over human DHODH and activity against blood and liver stages of Plasmodium falciparum. This study aimed to assess the efficacy of DSM265 in patients with P falciparum or Plasmodium vivax malaria infection. METHODS: This proof-of-concept, open-label, phase 2a study was conducted at the Asociación Civil Selva Amazónica in Iquitos, Peru. Patients aged 18-70 years, weighing 45-90 kg, who had clinical malaria (P falciparum or P vivax monoinfection) and fever within the previous 24 h were eligible. Exclusion criteria were clinical or laboratory signs of severe malaria, inability to take oral medicine, and use of other antimalarial treatment in the preceding 14 days. Patients were divided into cohorts of those with P falciparum (cohort a) or P vivax (cohort b) infection. Two initial cohorts received single oral doses of 400 mg DSM265. Patients were followed up for efficacy for 28 days and safety for 35 days. Further cohorts received escalated or de-escalated doses of DSM265, after safety and efficacy assessment of the initial dose. The primary endpoints were the proportion of patients achieving PCR-adjusted adequate clinical and parasitological response (ACPR) by day 14 for patients infected with P falciparum and the proportion of patients achieving a crude cure by day 14 for those infected with P vivax. Cohort success, the criteria for dose escalation, was defined as ACPR (P falciparum) or crude cure (P vivax) in at least 80% of patients in the cohort. The primary analysis was done in the intention-to-treat population (ITT) and the per-protocol population, and safety analyses were done in all patients who received the study drug. This study is registered at ClinicalTrials.gov (NCT02123290). FINDINGS: Between Jan 12, 2015, and Dec 2, 2015, 45 Peruvian patients (24 with P falciparum [cohort a] and 21 with P vivax [cohort b] infection) were sequentially enrolled. For patients with P falciparum malaria in the per-protocol population, all 11 (100%) in the 400 mg group and eight (80%) of ten in the 250 mg group achieved ACPR on day 14. In the ITT analysis, 11 (85%) of 13 in the 400 mg group and eight (73%) of 11 in the 250 mg group achieved ACPR at day 14. For the patients with P vivax malaria, the primary endpoint was not met. In the per-protocol analysis, none of four patients who had 400 mg, three (50%) of six who had 600 mg, and one (25%) of four who had 800 mg DSM265 achieved crude cure at day 14. In the ITT analysis, none of five in the 400 mg group, three (33%) of nine in the 600 mg group, and one (14%) of seven in the 800 mg group achieved crude cure at day 14. During the 28-day extended observation of P falciparum patients, a resistance-associated mutation in the gene encoding the DSM265 target DHODH was observed in two of four recurring patients. DSM265 was well tolerated. The most common adverse events were pyrexia (20 [44%] of 45) and headache (18 [40%] of 45), which are both common symptoms of malaria, and no patients had any treatment-related serious adverse events or adverse events leading to study discontinuation. INTERPRETATION: After a single dose of DSM265, P falciparum parasitaemia was rapidly cleared, whereas against P vivax, DSM265 showed less effective clearance kinetics. Its long duration of action provides the potential to prevent recurrence of P falciparum after treatment with a single dose, which should be further assessed in future combination studies. FUNDING: The Global Health Innovative Technology Fund, the Bill & Melinda Gates Foundation, the National Institutes of Health (R01 AI103058), the Wellcome Trust, and the UK Department of International Development.


Assuntos
Antimaláricos/administração & dosagem , Malária Falciparum/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Plasmodium falciparum/imunologia , Pirimidinas/administração & dosagem , Triazóis/administração & dosagem , Adulto , Estudos de Coortes , Di-Hidro-Orotato Desidrogenase , Feminino , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Vivax/imunologia , Malária Vivax/parasitologia , Masculino , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Peru
19.
Trends Parasitol ; 33(9): 731-743, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28688800

RESUMO

Artemisinin (ART)-based combination therapies are the most efficacious treatment of uncomplicated Plasmodium falciparum malaria. Alarmingly, P. falciparum strains have acquired resistance to ART across much of Southeast Asia. ART creates widespread protein and lipid damage inside intraerythrocytic parasites, necessitating macromolecule degradation. The proteasome is the main engine of Plasmodium protein degradation. Indeed, proteasome inhibition and ART have shown synergy in ART-resistant parasites. Moreover, ubiquitin modification is associated with altered parasite susceptibility to multiple antimalarials. Targeting the ubiquitin-proteasome system (UPS), therefore, is an attractive avenue to combat drug resistance. Here, we review recent advances leading to specific targeting of the Plasmodium proteasome. We also highlight the potential for targeting other nonproteasomal protein degradation systems as an additional strategy to disrupt protein homeostasis.


Assuntos
Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Proteólise , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Resistência a Medicamentos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos
20.
Lancet Infect Dis ; 17(6): 626-635, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28363636

RESUMO

BACKGROUND: DSM265 is a novel antimalarial that inhibits plasmodial dihydroorotate dehydrogenase, an enzyme essential for pyrimidine biosynthesis. We investigated the safety, tolerability, and pharmacokinetics of DSM265, and tested its antimalarial activity. METHODS: Healthy participants aged 18-55 years were enrolled in a two-part study: part 1, a single ascending dose (25-1200 mg), double-blind, randomised, placebo-controlled study, and part 2, an open-label, randomised, active-comparator controlled study, in which participants were inoculated with Plasmodium falciparum induced blood-stage malaria (IBSM) and treated with DSM265 (150 mg) or mefloquine (10 mg/kg). Primary endpoints were DSM265 safety, tolerability, and pharmacokinetics. Randomisation lists were created using a validated, automated system. Both parts were registered with the Australian New Zealand Clinical Trials Registry, number ACTRN12613000522718 (part 1) and number ACTRN12613000527763 (part 2). FINDINGS: In part 1, 73 participants were enrolled between April 12, 2013, and July 14, 2015 (DSM265, n=55; placebo, n=18). In part 2, nine participants were enrolled between Sept 30 and Nov 25, 2013 (150 mg DSM265, n=7; 10 mg/kg mefloquine, n=2). In part 1, 117 adverse events were reported; no drug-related serious or severe events were reported. The most common drug-related adverse event was headache. The mean DSM265 peak plasma concentration (Cmax) ranged between 1310 ng/mL and 34 800 ng/mL and was reached in a median time (tmax) between 1·5 h and 4 h, with a mean elimination half-life between 86 h and 118 h. In part 2, the log10 parasite reduction ratio at 48 h in the DSM265 (150 mg) group was 1·55 (95% CI 1·42-1·67) and in the mefloquine (10 mg/kg) group was 2·34 (2·17-2·52), corresponding to a parasite clearance half-life of 9·4 h (8·7-10·2) and 6·2 h (5·7-6·7), respectively. The median minimum inhibitory concentration of DSM265 in blood was estimated as 1040 ng/mL (range 552-1500), resulting in a predicted single efficacious dose of 340 mg. Parasite clearance was significantly faster in participants who received mefloquine than in participants who received DSM265 (p<0·0001). INTERPRETATION: The good safety profile, long elimination half-life, and antimalarial effect of DSM265 supports its development as a partner drug in a single-dose antimalarial combination treatment. FUNDING: Wellcome Trust, UK Department for International Development, Global Health Innovative Technology Fund, Bill & Melinda Gates Foundation.


Assuntos
Antimaláricos/administração & dosagem , Mefloquina/uso terapêutico , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Triazóis/administração & dosagem , Triazóis/farmacocinética , Adolescente , Adulto , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Austrália , Di-Hidro-Orotato Desidrogenase , Método Duplo-Cego , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Meia-Vida , Humanos , Malária Falciparum/tratamento farmacológico , Pessoa de Meia-Idade , Nova Zelândia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Plasmodium falciparum , Pirimidinas/uso terapêutico , Triazóis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA