Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(2): 271-286.e13, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301652

RESUMO

The immune system encodes information about the severity of a pathogenic threat in the quantity and type of memory cells it forms. This encoding emerges from lymphocyte decisions to maintain or lose self-renewal and memory potential during a challenge. By tracking CD8+ T cells at the single-cell and clonal lineage level using time-resolved transcriptomics, quantitative live imaging, and an acute infection model, we find that T cells will maintain or lose memory potential early after antigen recognition. However, following pathogen clearance, T cells may regain memory potential if initially lost. Mechanistically, this flexibility is implemented by a stochastic cis-epigenetic switch that tunably and reversibly silences the memory regulator, TCF1, in response to stimulation. Mathematical modeling shows how this flexibility allows memory T cell numbers to scale robustly with pathogen virulence and immune response magnitudes. We propose that flexibility and stochasticity in cellular decisions ensure optimal immune responses against diverse threats.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Epigênese Genética , Células Clonais , Memória Imunológica , Diferenciação Celular
2.
Nat Immunol ; 17(8): 956-65, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376470

RESUMO

During T cell development, multipotent progenitors relinquish competence for other fates and commit to the T cell lineage by turning on Bcl11b, which encodes a transcription factor. To clarify lineage commitment mechanisms, we followed developing T cells at the single-cell level using Bcl11b knock-in fluorescent reporter mice. Notch signaling and Notch-activated transcription factors collaborate to activate Bcl11b expression irrespectively of Notch-dependent proliferation. These inputs work via three distinct, asynchronous mechanisms: an early locus 'poising' function dependent on TCF-1 and GATA-3, a stochastic-permissivity function dependent on Notch signaling, and a separate amplitude-control function dependent on Runx1, a factor already present in multipotent progenitors. Despite their necessity for Bcl11b expression, these inputs act in a stage-specific manner, providing a multitiered mechanism for developmental gene regulation.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Linfopoese/genética , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Linfócitos T/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Rastreamento de Células , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fator de Transcrição GATA3/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Repressoras/genética , Transdução de Sinais , Análise de Célula Única , Proteínas Supressoras de Tumor/genética
3.
Emerg Infect Dis ; 30(8): 1580-1588, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043398

RESUMO

Wastewater surveillance is an effective way to track the prevalence of infectious agents within a community and, potentially, the spread of pathogens between jurisdictions. We conducted a retrospective wastewater surveillance study of the 2022-23 influenza season in 2 communities, Detroit, Michigan, USA, and Windsor-Essex, Ontario, Canada, that form North America's largest cross-border conurbation. We observed a positive relationship between influenza-related hospitalizations and the influenza A virus (IAV) wastewater signal in Windsor-Essex (ρ = 0.785; p<0.001) and an association between influenza-related hospitalizations in Michigan and the IAV wastewater signal for Detroit (ρ = 0.769; p<0.001). Time-lagged cross correlation and qualitative examination of wastewater signal in the monitored sewersheds showed the peak of the IAV season in Detroit was delayed behind Windsor-Essex by 3 weeks. Wastewater surveillance for IAV reflects regional differences in infection dynamics which may be influenced by many factors, including the timing of vaccine administration between jurisdictions.


Assuntos
Vírus da Influenza A , Influenza Humana , Águas Residuárias , Ontário/epidemiologia , Humanos , Michigan/epidemiologia , Influenza Humana/epidemiologia , Águas Residuárias/virologia , Estudos Retrospectivos , Estações do Ano , História do Século XXI , Hospitalização
4.
PLoS Genet ; 17(10): e1009865, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699533

RESUMO

Chromatin accessibility and gene expression in relevant cell contexts can guide identification of regulatory elements and mechanisms at genome-wide association study (GWAS) loci. To identify regulatory elements that display differential activity across adipocyte differentiation, we performed ATAC-seq and RNA-seq in a human cell model of preadipocytes and adipocytes at days 4 and 14 of differentiation. For comparison, we created a consensus map of ATAC-seq peaks in 11 human subcutaneous adipose tissue samples. We identified 58,387 context-dependent chromatin accessibility peaks and 3,090 context-dependent genes between all timepoint comparisons (log2 fold change>1, FDR<5%) with 15,919 adipocyte- and 18,244 preadipocyte-dependent peaks. Adipocyte-dependent peaks showed increased overlap (60.1%) with Roadmap Epigenomics adipocyte nuclei enhancers compared to preadipocyte-dependent peaks (11.5%). We linked context-dependent peaks to genes based on adipocyte promoter capture Hi-C data, overlap with adipose eQTL variants, and context-dependent gene expression. Of 16,167 context-dependent peaks linked to a gene, 5,145 were linked by two or more strategies to 1,670 genes. Among GWAS loci for cardiometabolic traits, adipocyte-dependent peaks, but not preadipocyte-dependent peaks, showed significant enrichment (LD score regression P<0.005) for waist-to-hip ratio and modest enrichment (P < 0.05) for HDL-cholesterol. We identified 659 peaks linked to 503 genes by two or more approaches and overlapping a GWAS signal, suggesting a regulatory mechanism at these loci. To identify variants that may alter chromatin accessibility between timepoints, we identified 582 variants in 454 context-dependent peaks that demonstrated allelic imbalance in accessibility (FDR<5%), of which 55 peaks also overlapped GWAS variants. At one GWAS locus for palmitoleic acid, rs603424 was located in an adipocyte-dependent peak linked to SCD and exhibited allelic differences in transcriptional activity in adipocytes (P = 0.003) but not preadipocytes (P = 0.09). These results demonstrate that context-dependent peaks and genes can guide discovery of regulatory variants at GWAS loci and aid identification of regulatory mechanisms.


Assuntos
Diferenciação Celular/genética , Cromatina/genética , Expressão Gênica/genética , Locos de Características Quantitativas/genética , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Alelos , Desequilíbrio Alélico/genética , Sítios de Ligação/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Epigenômica/métodos , Técnicas Genéticas , Estudo de Associação Genômica Ampla/métodos , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética
5.
Glycobiology ; 33(3): 245-259, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36637425

RESUMO

Streptococcus mutans is a key pathogen associated with dental caries and is often implicated in infective endocarditis. This organism forms robust biofilms on tooth surfaces and can use collagen-binding proteins (CBPs) to efficiently colonize collagenous substrates, including dentin and heart valves. One of the best characterized CBPs of S. mutans is Cnm, which contributes to adhesion and invasion of oral epithelial and heart endothelial cells. These virulence properties were subsequently linked to post-translational modification (PTM) of the Cnm threonine-rich repeat region by the Pgf glycosylation machinery, which consists of 4 enzymes: PgfS, PgfM1, PgfE, and PgfM2. Inactivation of the S. mutans pgf genes leads to decreased collagen binding, reduced invasion of human coronary artery endothelial cells, and attenuated virulence in the Galleria mellonella invertebrate model. The present study aimed to better understand Cnm glycosylation and characterize the predicted 4-epimerase, PgfE. Using a truncated Cnm variant containing only 2 threonine-rich repeats, mass spectrometric analysis revealed extensive glycosylation with HexNAc2. Compositional analysis, complemented with lectin blotting, identified the HexNAc2 moieties as GlcNAc and GalNAc. Comparison of PgfE with the other S. mutans 4-epimerase GalE through structural modeling, nuclear magnetic resonance, and capillary electrophoresis demonstrated that GalE is a UDP-Glc-4-epimerase, while PgfE is a GlcNAc-4-epimerase. While PgfE exclusively participates in protein O-glycosylation, we found that GalE affects galactose metabolism and cell division. This study further emphasizes the importance of O-linked protein glycosylation and carbohydrate metabolism in S. mutans and identifies the PTM modifications of the key CBP, Cnm.


Assuntos
Adesinas Bacterianas , Cárie Dentária , Humanos , Glicosilação , Adesinas Bacterianas/genética , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Aderência Bacteriana/fisiologia , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Células Endoteliais/metabolismo , Proteínas de Transporte/genética , Colágeno/genética , Divisão Celular
6.
Nucleic Acids Res ; 49(14): e82, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34048564

RESUMO

Proper regulation of genome architecture and activity is essential for the development and function of multicellular organisms. Histone modifications, acting in combination, specify these activity states at individual genomic loci. However, the methods used to study these modifications often require either a large number of cells or are limited to targeting one histone mark at a time. Here, we developed a new method called Single Cell Evaluation of Post-TRanslational Epigenetic Encoding (SCEPTRE) that uses Expansion Microscopy (ExM) to visualize and quantify multiple histone modifications at non-repetitive genomic regions in single cells at a spatial resolution of ∼75 nm. Using SCEPTRE, we distinguished multiple histone modifications at a single housekeeping gene, quantified histone modification levels at multiple developmentally-regulated genes in individual cells, and evaluated the relationship between histone modifications and RNA polymerase II loading at individual loci. We find extensive variability in epigenetic states between individual gene loci hidden from current population-averaged measurements. These findings establish SCEPTRE as a new technique for multiplexed detection of combinatorial chromatin states at single genomic loci in single cells.


Assuntos
Cromatina/metabolismo , Genoma Humano/genética , Histonas/metabolismo , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Análise de Célula Única/métodos , Linhagem Celular , Cromatina/genética , Epigênese Genética/genética , Código das Histonas/genética , Humanos , Hibridização in Situ Fluorescente/métodos , Cadeias Leves de Miosina/genética
7.
J Biol Chem ; 297(4): 101211, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547292

RESUMO

Benzylisoquinoline alkaloids (BIAs) are a class of specialized metabolites with a diverse range of chemical structures and physiological effects. Codeine and morphine are two closely related BIAs with particularly useful analgesic properties. The aldo-keto reductase (AKR) codeinone reductase (COR) catalyzes the final and penultimate steps in the biosynthesis of codeine and morphine, respectively, in opium poppy (Papaver somniferum). However, the structural determinants that mediate substrate recognition and catalysis are not well defined. Here, we describe the crystal structure of apo-COR determined to a resolution of 2.4 Å by molecular replacement using chalcone reductase as a search model. Structural comparisons of COR to closely related plant AKRs and more distantly related homologues reveal a novel conformation in the ß1α1 loop adjacent to the BIA-binding pocket. The proximity of this loop to several highly conserved active-site residues and the expected location of the nicotinamide ring of the NADP(H) cofactor suggest a model for BIA recognition that implies roles for several key residues. Using site-directed mutagenesis, we show that substitutions at Met-28 and His-120 of COR lead to changes in AKR activity for the major and minor substrates codeinone and neopinone, respectively. Our findings provide a framework for understanding the molecular basis of substrate recognition in COR and the closely related 1,2-dehydroreticuline reductase responsible for the second half of a stereochemical inversion that initiates the morphine biosynthesis pathway.


Assuntos
Benzilisoquinolinas/química , Modelos Moleculares , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+)/química , Papaver/enzimologia , Proteínas de Plantas/química , Benzilisoquinolinas/metabolismo , Cristalografia por Raios X , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+)/metabolismo , Proteínas de Plantas/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade
8.
J Biol Chem ; 294(40): 14482-14498, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31395658

RESUMO

Benzylisoquinoline alkaloids (BIAs) are a structurally diverse class of plant-specialized metabolites that have been particularly well-studied in the order Ranunculales. The N-methyltransferases (NMTs) in BIA biosynthesis can be divided into three groups according to substrate specificity and amino acid sequence. Here, we report the first crystal structures of enzyme complexes from the tetrahydroprotoberberine NMT (TNMT) subclass, specifically for GfTNMT from the yellow horned poppy (Glaucium flavum). GfTNMT was co-crystallized with the cofactor S-adenosyl-l-methionine (dmin = 1.6 Å), the product S-adenosyl-l-homocysteine (dmin = 1.8 Å), or in complex with S-adenosyl-l-homocysteine and (S)-cis-N-methylstylopine (dmin = 1.8 Å). These structures reveal for the first time how a mostly hydrophobic L-shaped substrate recognition pocket selects for the (S)-cis configuration of the two central six-membered rings in protoberberine BIA compounds. Mutagenesis studies confirm and functionally define the roles of several highly-conserved residues within and near the GfTNMT-active site. The substrate specificity of TNMT enzymes appears to arise from the arrangement of subgroup-specific stereospecific recognition elements relative to catalytic elements that are more widely-conserved among all BIA NMTs. The binding mode of protoberberine compounds to GfTNMT appears to be similar to coclaurine NMT, with the isoquinoline rings buried deepest in the binding pocket. This binding mode differs from that of pavine NMT, in which the benzyl ring is bound more deeply than the isoquinoline rings. The insights into substrate recognition and catalysis provided here form a sound basis for the rational engineering of NMT enzymes for chemoenzymatic synthesis and metabolic engineering.


Assuntos
Alcaloides de Berberina/química , Metiltransferases/ultraestrutura , Conformação Proteica , Relação Estrutura-Atividade , Alcaloides/química , Alcaloides/metabolismo , Benzilisoquinolinas/química , Benzilisoquinolinas/metabolismo , Alcaloides de Berberina/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Metiltransferases/química , Metiltransferases/metabolismo , Mutagênese , Ligação Proteica/genética , Ranunculales/enzimologia , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
9.
Plant J ; 95(2): 252-267, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29723437

RESUMO

Noscapine biosynthesis in opium poppy involves three characterized O-methyltransferases (OMTs) and a fourth responsible for the 4'-methoxyl on the phthalide isoquinoline scaffold. The first three enzymes are homodimers, whereas the latter is a heterodimer encoded by two linked genes (OMT2 and OMT3). Neither OMT2 nor OMT3 form stable homodimers, but yield a substrate-specific heterodimer when their genes are co-expressed in Escherichia coli. The only substrate, 4'-O-desmethyl-3-O-acetylpapaveroxine, is a seco-berbine pathway intermediate that undergoes ester hydrolysis subsequent to 4'-O-methylation leading to the formation of narcotine hemiacetal. In the absence of 4'-O-methylation, a parallel pathway yields narcotoline hemiacetal. Dehydrogenation produces noscapine and narcotoline from the corresponding hemiacetals. Phthalide isoquinoline intermediates with a 4'-hydroxyl (i.e. narcotoline and narcotoline hemiacetal), or the corresponding 1-hydroxyl on protoberberine intermediates, were not accepted. Norcoclaurine 6OMT, which shares 81% amino acid sequence identity with OMT3, also formed a functionally similar heterodimer with OMT2. Suppression of OMT2 transcript levels in opium poppy increased narcotoline accumulation, whereas reduced OMT3 transcript abundance caused no detectable change in the alkaloid phenotype. Opium poppy chemotype Marianne accumulates high levels of narcotoline and showed no detectable OMT2:OMT3 activity. Compared with the active subunit from the Bea's Choice chemotype, Marianne OMT2 exhibited a single S122Y mutation in the dimerization domain that precluded heterodimer formation based on homology models. Both subunits contributed to the formation of the substrate-binding domain, although site-directed mutagenesis revealed OMT2 as the active subunit. The occurrence of physiologically relevant OMT heterodimers increases the catalytic diversity of enzymes derived from a smaller number of gene products.


Assuntos
Metiltransferases/metabolismo , Noscapina/metabolismo , Papaver/metabolismo , Proteínas de Plantas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes de Plantas/genética , Redes e Vias Metabólicas , Metilação , Metiltransferases/genética , Microrganismos Geneticamente Modificados , Papaver/enzimologia , Papaver/genética , Proteínas de Plantas/genética
10.
Plant J ; 2018 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-29779229

RESUMO

Codeinone reductase (COR) catalyzes the reversible NADPH-dependent reduction of codeinone to codeine as the penultimate step of morphine biosynthesis in opium poppy (Papaver somniferum). It also irreversibly reduces neopinone, which forms by spontaneous isomerization in aqueous solution from codeinone, to neopine. In a parallel pathway involving 3-O-demethylated analogs, COR converts morphinone to morphine, and neomorphinone to neomorphine. Similar to neopine, the formation of neomorphine by COR is irreversible. Neopine is a minor substrate for codeine O-demethylase (CODM), yielding morphine. In the plant, neopine levels are low and neomorphine has not been detected. Silencing of CODM leads to accumulation of upstream metabolites, such as codeine and thebaine, but does not result in a shift towards higher relative concentrations of neopine, suggesting a mechanism in the plant for limiting neopine production. In yeast (Saccharomyces cerevisiae) engineered to produce opiate alkaloids, the catalytic properties of COR lead to accumulation of neopine and neomorphine as major products. An isoform (COR-B) was isolated from opium poppy chemotype Bea's Choice that showed higher catalytic activity than previously characterized CORs, and it yielded mostly neopine in vitro and in engineered yeast. Five catalytically distinct COR isoforms (COR1.1-1.4 and COR-B) were used to determine sequence-function relationships that influence product selectivity. Biochemical characterization and site-directed mutagenesis of native COR isoforms identified four residues (V25, K41, F129 and W279) that affected protein stability, reaction velocity, and product selectivity and output. Improvement of COR performance coupled with an ability to guide pathway flux is necessary to facilitate commercial production of opiate alkaloids in engineered microorganisms.

11.
J Biol Chem ; 291(45): 23403-23415, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27573242

RESUMO

Benzylisoquinoline alkaloids (BIAs) are produced in a wide variety of plants and include many common analgesic, antitussive, and anticancer compounds. Several members of a distinct family of S-adenosylmethionine (SAM)-dependent N-methyltransferases (NMTs) play critical roles in BIA biosynthesis, but the molecular basis of substrate recognition and catalysis is not known for NMTs involved in BIA metabolism. To address this issue, the crystal structure of pavine NMT from Thalictrum flavum was solved using selenomethionine-substituted protein (dmin = 2.8 Å). Additional structures were determined for the native protein (dmin = 2.0 Å) as well as binary complexes with SAM (dmin = 2.3 Å) or the reaction product S-adenosylhomocysteine (dmin = 1.6 Å). The structure of a complex with S-adenosylhomocysteine and two molecules of tetrahydropapaverine (THP; one as the S conformer and a second in the R configuration) (dmin = 1.8 Å) revealed key features of substrate recognition. Pavine NMT converted racemic THP to laudanosine, but the enzyme showed a preference for (±)-pavine and (S)-reticuline as substrates. These structures suggest the involvement of highly conserved residues at the active site. Mutagenesis of three residues near the methyl group of SAM and the nitrogen atom of the alkaloid acceptor decreased enzyme activity without disrupting the structure of the protein. The binding site for THP provides a framework for understanding substrate specificity among numerous NMTs involved in the biosynthesis of BIAs and other specialized metabolites. This information will facilitate metabolic engineering efforts aimed at producing medicinally important compounds in heterologous systems, such as yeast.


Assuntos
Isoquinolinas/metabolismo , Metiltransferases/metabolismo , Thalictrum/enzimologia , Benzilisoquinolinas/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Metiltransferases/química , Modelos Moleculares , Conformação Proteica , S-Adenosil-Homocisteína/metabolismo , Especificidade por Substrato , Thalictrum/química , Thalictrum/metabolismo
12.
Proteins ; 85(8): 1435-1445, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28383118

RESUMO

Norovirus (NV) RNA-dependent RNA polymerase (RdRP) is essential for replicating the genome of the virus, which makes this enzyme a key target for the development of antiviral agents against NV gastroenteritis. In this work, a complex of NV RdRP bound to manganese ions and an RNA primer-template duplex was investigated using X-ray crystallography and hybrid quantum chemical/molecular mechanical simulations. Experimentally, the complex crystallized in a tetragonal crystal form. The nature of the primer/template duplex binding in the resulting structure indicates that the complex is a closed back-tracked state of the enzyme, in which the 3'-end of the primer occupies the position expected for the post-incorporated nucleotide before translocation. Computationally, it is found that the complex can accept a range of divalent metal cations without marked distortions in the active site structure. The highest binding energy is for copper, followed closely by manganese and iron, and then by zinc, nickel, and cobalt. Proteins 2017; 85:1435-1445. © 2017 Wiley Periodicals, Inc.


Assuntos
Cobre/química , Manganês/química , Norovirus/química , Oligorribonucleotídeos/química , RNA Polimerase Dependente de RNA/química , Proteínas Virais/química , Motivos de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cátions Bivalentes , Cobalto/química , Cristalografia por Raios X , Ferro/química , Cinética , Simulação de Dinâmica Molecular , Níquel/química , Norovirus/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Teoria Quântica , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica , Proteínas Virais/genética , Proteínas Virais/metabolismo , Zinco/química
13.
Glycobiology ; 27(10): 978-989, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922740

RESUMO

In Campylobacter jejuni, the PglB oligosaccharyltransferase catalyzes the transfer of a heptasaccharide from a lipid donor to asparagine within the D/E-X1-N-X2-S/T sequon (X1,2 ≠ P) or releases this heptasaccharide as free oligosaccharides (fOS). Using available crystal structures and sequence alignments, we identified a DGGK motif near the active site of PglB that is conserved among all Campylobacter species. We demonstrate that amino acid substitutions in the aspartate and lysine residues result in loss of protein glycosylation in the heterologous Escherichia coli system. Similarly, complementation of a C. jejuni pglB knock-out strain with mutated pglB alleles results in reduced levels of N-linked glycoproteins and fOS in the native host. Analysis of the PglB crystal structures from Campylobacter lari and the soluble C-terminal domain from C. jejuni suggests a particularly important structural role for the aspartate residue and the two following glycine residues, as well as a more subtle, less defined role for the lysine residue. Limited proteolysis experiments indicate that conformational changes of wildtype PglB that are induced by the binding of the lipid-linked oligosaccharide are altered by changes in the DGGK motif. Related to these findings, certain Campylobacter species possess two PglB orthologues and we demonstrate that only the orthologue containing the DGGK motif is active. Combining the knowledge gained from the PglB structures and mutagenesis studies, we propose a function for the DGGK motif in affecting the binding of the undecaprenyl-pyrophosphate glycan donor substrate that subsequently influences N-glycan and fOS production.


Assuntos
Proteínas de Bactérias/química , Campylobacter jejuni/enzimologia , Sequência Conservada , Glicosiltransferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Glicosiltransferases/metabolismo , Lipopolissacarídeos/química , Simulação de Acoplamento Molecular , Mutação , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica
14.
Anal Chem ; 88(9): 4742-50, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27049760

RESUMO

This work describes the application of the catch-and-release electrospray ionization-mass spectrometry (CaR-ESI-MS) assay, implemented using picodiscs (complexes comprised of saposin A and lipids, PDs), to screen mixtures of glycolipids (GLs) against water-soluble proteins to detect specific interactions. To demonstrate the reliability of the method, seven gangliosides (GM1, GM2, GM3, GD1a, GD1b, GD2, and GT1b) were incorporated, either individually or as a mixture, into PDs and screened against two lectins: the B subunit homopentamer of cholera toxin (CTB5) and a subfragment of toxin A from Clostridium difficile (TcdA-A2). The CaR-ESI-MS results revealed that CTB5 binds to six of the gangliosides (GM1, GM2, GM3, GD1a, GD1b, and GT1b), while TcdA-A2 binds to five of them (GM1, GM2, GM3, GD1a, and GT1b). These findings are consistent with the measured binding specificities of these proteins for ganglioside oligosaccharides. Screening mixtures of lipids extracted from porcine brain and a human epithelial cell line against CTB5 revealed binding to multiple GM1 isoforms as well as to fucosyl-GM1, which is a known ligand. Finally, a comparison of the present results with data obtained with the CaR-ESI-MS assay implemented using nanodiscs (NDs) revealed that the PDs exhibited similar or superior performance to NDs for protein-GL binding measurements.


Assuntos
Toxinas Bacterianas/análise , Toxina da Cólera/análise , Enterotoxinas/análise , Gangliosídeos/química , Lectinas/química , Espectrometria de Massas por Ionização por Electrospray , Humanos
15.
Arch Biochem Biophys ; 590: 125-137, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26657067

RESUMO

Two families of methionine synthases, distinct in catalytic and structural features, have been encountered: MetH, the cobalamin-dependent enzyme and MetE, the cobalamin-independent form. The MetE family is of mechanistic interest due to the chemically challenging nature of the reaction and is a potential target for antifungal therapeutics since the human genome encodes only MetH. Here we report the identification, purification, and crystal structure of MetE from the filamentous fungus Neurospora crassa (ncMetE). ncMetE was highly thermostable and crystallized readily, making it ideal for study. Crystal structures of native ncMetE in complex with either Zn(2+)or Cd(2+) were solved at resolution limits of 2.10 Å and 1.88 Å, respectively. The monomeric protein contains two domains, each containing a (ßα)8 barrel core, and a long α-helical segment spans the length of the protein, connecting the domains. Zn(2+) bound in the C-terminal domain exhibits tetrahedral coordination with the side chains of His 652, Cys 654, Glu 676 and Cys 737. A Cd(2+) replete structure revealed a supermetalated enzyme and demonstrated the inate flexibility of the metal binding site. An extensive analysis of sequence conservation within the MetE family identified 57 highly conserved residues and 60 additional residues that were conserved in all fungal sequences examined.


Assuntos
Metais/química , Metiltransferases/química , Metiltransferases/ultraestrutura , Modelos Químicos , Neurospora crassa/enzimologia , Zinco/química , Sequência de Aminoácidos , Sítios de Ligação , Ativação Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
16.
Angew Chem Int Ed Engl ; 55(34): 10003-7, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27411830

RESUMO

Photothermal therapy (PTT) is enhanced by the use of nanoparticles with a large optical absorption at the treatment wavelength. However, this comes at the cost of higher light attenuation that results in reduced depth of heating as well as larger thermal gradients, leading to potential over- and under-treatment in the target tissue. These limitations can be overcome by using photothermal enhancing auto-regulating liposomes (PEARLs), based on thermochromic J-aggregate forming dye-lipid conjugates that reversibly alter their absorption above a predefined lipid phase-transition temperature. Under irradiation by near-infrared light, deeper layers of the target tissue revert to the intrinsic optical absorption, halting the temperature rise and enabling greater light penetration and heat generation at depth. This effect is demonstrated in both nanoparticle solutions and in gel phantoms containing the nanoparticles.


Assuntos
Temperatura Alta , Luz , Lipossomos/metabolismo , Lipossomos/química , Nanopartículas/química , Processos Fotoquímicos , Fototerapia , Soluções
17.
J Biol Chem ; 289(4): 2331-43, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24311789

RESUMO

Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents.


Assuntos
Anticorpos Antibacterianos/química , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Clostridioides difficile/química , Enterotoxinas/química , Epitopos/química , Anticorpos de Cadeia Única/química , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Clostridioides difficile/genética , Clostridioides difficile/imunologia , Cristalografia por Raios X , Enterotoxinas/antagonistas & inibidores , Enterotoxinas/genética , Enterotoxinas/imunologia , Epitopos/genética , Epitopos/imunologia , Humanos , Estrutura Terciária de Proteína , Anticorpos de Cadeia Única/imunologia , Relação Estrutura-Atividade
18.
J Virol ; 88(18): 10738-47, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24991013

RESUMO

UNLABELLED: Noroviruses (NoV) are members of the family Caliciviridae. The human NoV open reading frame 1 (ORF1) encodes a 200-kDa polyprotein which is cleaved by the viral 20-kDa 3C-like protease (Pro, NS6) into 6 nonstructural proteins that are necessary for viral replication. The NoV ORF1 polyprotein is processed in a specific order, with "early" sites (NS1/2-3 and NS3-4) being cleaved rapidly and three "late" sites (NS4-5, NS5-6, and NS6-7) processed subsequently and less efficiently. Previously, we demonstrated that the NoV polyprotein processing order is directly correlated with the efficiency of the enzyme, which is regulated by the primary amino acid sequences surrounding ORF1 cleavage sites. Using fluorescence resonance energy transfer (FRET) peptides representing the NS2-3 and NS6-7 ORF1 cleavage sites, we now demonstrate that the amino acids spanning positions P4 to P2' (P4-P2') surrounding each site comprise the core sequence controlling NoV protease enzyme efficiency. Furthermore, the NoV polyprotein self-processing order can be altered by interchanging this core sequence between NS2-3 and any of the three late sites in in vitro transcription-translation assays. We also demonstrate that the nature of the side chain at the P3 position for the NS1/2-3 (Nterm/NTPase) site confers significant influence on enzyme catalysis (kcat and kcat/Km), a feature overlooked in previous structural studies. Molecular modeling provides possible explanations for the P3 interactions with NoV protease. IMPORTANCE: Noroviruses (NoV) are the prevailing cause of nonbacterial acute gastroenteritis worldwide and pose a significant financial burden on health care systems. Proteolytic processing of the viral nonstructural polyprotein is required for norovirus replication. Previously, the core sequence of amino acids surrounding the scissile bonds responsible for governing the relative processing order had not been determined. Using both FRET-based peptides and full-length NoV polyprotein, we have successfully demonstrated that the core sequences spanning positions P4-P2' surrounding the NS2-3, NS4-5, NS5-6, and NS6-7 cleavage sites contain all of the structural information necessary to control processing order. We also provide insight into a previously overlooked role for the NS2-3 P3 residue in enzyme efficiency. This article builds upon our previous studies on NoV protease enzymatic activities and polyprotein processing order. Our work provides significant additional insight into understanding viral polyprotein processing and has important implications for improving the design of inhibitors targeting the NoV protease.


Assuntos
Infecções por Caliciviridae/virologia , Norovirus/metabolismo , Vírus Norwalk/metabolismo , Poliproteínas/química , Poliproteínas/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Motivos de Aminoácidos , Humanos , Norovirus/química , Norovirus/genética , Vírus Norwalk/química , Vírus Norwalk/genética , Fases de Leitura Aberta , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Poliproteínas/genética , Processamento de Proteína Pós-Traducional , Proteínas não Estruturais Virais/genética
19.
Bioconjug Chem ; 26(2): 345-51, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25563975

RESUMO

Porphysomes are highly quenched unilamellar porphyrin-lipid nanovesicles with structurally dependent photothermal properties. The high packing density of porphyrin molecules in the lipid bilayer enables their application in photothermal therapy, whereas the partial disruption of the porphysome structure over time restores the porphyrin fluorescence and enables the fluorescence-guided photothermal ablation. This conversion is a time-dependent process and cannot be easily followed using existing analytical techniques. Here we present the design of a novel self-sensing porphysome (FRETysomes) capable of fluorescently broadcasting its structural state through Förster resonance energy transfer. By doping in a near-infrared emitting fluorophore, it is possible to divert a small fraction of the absorbed energy toward fluorescence emission which provides information on whether the vesicle is intact or disrupted. Addition of bacteriopheophorbide-lipid into the vesicle bilayer as a fluorescence acceptor (0.5-7.5 mol %) yields a large separation of 100 nm between the absorption and fluorescence bands of the nanoparticle. Furthermore, a progressive increase in FRET efficiency (14.6-72.7%) is observed. Photothermal heating and serum stability in FRETysomes is comparable with the undoped porphysomes. The fluorescence arising from the energy transfer between the donor and acceptor dyes can be clearly visualized in vivo through hyperspectral imaging. By calculating the ratio between the acceptor and donor fluorescence, it is possible to determine the structural fate of the nanovesicles. We observe using this technique that tumor accumulation of structurally intact porphyrin-lipid nanovesicles persists at 24 and 48 h postinjection. The development of FRETysomes offers a unique and critical imaging tool for planning porphysome-enabled fluorescence-guided photothermal treatment, which maximizes light-induced thermal toxicity.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/terapia , Fototerapia/métodos , Animais , Linhagem Celular , Feminino , Corantes Fluorescentes/química , Hipertermia Induzida/métodos , Lipídeos/química , Lipídeos/uso terapêutico , Camundongos Nus , Nanopartículas/química , Neoplasias/patologia , Imagem Óptica , Porfirinas/química , Porfirinas/uso terapêutico
20.
Org Biomol Chem ; 13(1): 283-98, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25367771

RESUMO

A focused library of virtual heterobifunctional ligands was generated in silico and a set of ligands with recombined fragments was synthesized and evaluated for binding to Clostridium difficile toxins. The position of the trisaccharide fragment was used as a reference for filtering docked poses during virtual screening to match the trisaccharide ligand in a crystal structure. The peptoid, a diversity fragment probing the protein surface area adjacent to a known binding site, was generated by a multi-component Ugi reaction. Our approach combines modular fragment-based design with in silico screening of synthetically feasible compounds and lays the groundwork for future efforts in development of composite bifunctional ligands for large clostridial toxins.


Assuntos
Clostridioides difficile , Simulação por Computador , Bibliotecas de Moléculas Pequenas/metabolismo , Toxinas Biológicas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Metabolismo dos Carboidratos , Técnicas de Química Combinatória , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Toxinas Biológicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA