RESUMO
The adsorption ability of hydrogen, hydroxide, and oxygenic intermediates plays a crucial role in electrochemical water splitting. Electron-deficient metal-active sites can prompt electrocatalytic activity by improving the adsorption ability of intermediates. However, it remains a significant challenge to synthesize highly abundant and stable electron-deficient metal-active site electrocatalysts. Herein, we present a general approach to synthesizing a hollow ternary metal fluoride (FeCoNiF2) nanoflake array as an efficient and robust bifunctional electrocatalyst for the hydrogen evolution reaction (HER) and urea oxidation reaction (UOR). We find that the F anion withdraws electrons from the metal centers, inducing an electron-deficient metal center catalyst. The rationally designed hollow nanoflake array exhibits the overpotential of 30 mV for HER and 130 mV for UOR at a current density of 10 mA cm-2 and superior stability without decay events over 150 h at a large current density of up to 100 mA cm-2. Remarkably, the assembled urea electrolyzer using a bifunctional hollow FeCoNiF2 nanoflake array catalyst requires cell voltages of only 1.352 and 1.703 V to afford current densities of 10 and 100 mA cm-2, respectively, which are 116 mV less compared with that required for overall water splitting.
RESUMO
The demand for a wide array of functional chemicals and materials has experienced a significant surge in tandem with the advancement of civilization. Regrettably, a number of perilous solvents are employed in chemical laboratories and industrial settings, posing significant risks to the well-being of researchers and contributing to environmental degradation through pollution. Eutectogels, which are based on the eutectic concept, may be synthesized by self-assembling or self-polymerization of various components when put under UV irradiation (254 nm). A novel copolymeric deep eutectic solvent (DES) was successfully synthesized, comprising choline chloride (HBA) as the hydrogen bond acceptor, acetamide (HBD) as the hydrogen bond donor, tetraethyl orthosilicate (TEOS), and formic acid. In this study, we present the preparation of four-component ETGs for synthesizing pyridine and chromene derivatives as a reusable catalyst through a multi-component pathway without solvents. The procedure of synthesizing these heterocyclic compounds is free of using toxic solvents and it could be categorized as a green method.
RESUMO
Cellulose/ZnO (CZ) nanocomposites are promising antimicrobial materials known for their antibiotic-free nature, biocompatibility, and environmental friendliness. In this study, cellulose fibers extracted from lotus petioles were utilized as a substrate and decorated with various shapes of ZnO nanoparticles (NPs), including small bean, hexagonal ingot-like, long cylindrical, and hexagonal cylinder-shaped NPs. Increasing zinc salt molar concentration resulted in highly crystalline ZnO NPs forming and enhanced interactions between ZnO NPs and -OH groups of cellulose. The thermal stability and UV-visible absorption properties of the CZ samples were influenced by ZnO concentration. Notably, at a ZnO molar ratio of 0.1, the CZ 0.1 sample demonstrated the lowest weight loss, while the optical band gap gradually decreased from 3.0 to 2.45 eV from the CZ 0.01 to CZ 1.0 samples. The CZ nanocomposites exhibited remarkable antibacterial activity against both Staphylococcus aureus (S. aureus, Gram-positive) and Escherichia coli (E. coli, Gram-negative) bacteria under visible light conditions, with a minimum inhibitory concentration (MIC) of 0.005 mg/mL for both bacterial strains. The bactericidal effects increased with higher concentrations of ZnO NPs, even achieving 100% inhibition. Incorporating ZnO NPs onto cellulose fibers derived from lotus plants presents a promising avenue for developing environmentally friendly materials with broad applications in antibacterial and environmental fields.
RESUMO
Dopant-induced electron redistribution on transition metal-based materials has long been considered an emerging new electrocatalyst that is expected to replace noble-metal-based electrocatalysts in natural seawater electrolysis; however, their practical applications remain extremely daunting due to their sluggish kinetics in natural seawater. In this work, we developed a facile strategy to synthesize the 3D sponge-like hierarchical structure of Ru-doped NiCoFeP nanosheet arrays derived from metal-organic frameworks with remarkable hydrogen evolution reaction (HER) performance in natural seawater. Based on experimental results and density functional theory calculations, Ru-doping-induced charge redistribution on the surface of metal active sites has been found, which can significantly enhance the HER activity. As a result, the 3D sponge-like hierarchical structure of Ru-NiCoFeP nanosheet arrays achieves low overpotentials of 52, 149, and 216 mV at 10, 100, and 500 mA cm-2 in freshwater alkaline, respectively. Notably, the electrocatalytic activity of the Ru-NiCoFeP electrocatalyst in simulated alkaline seawater and natural alkaline seawater is nearly the same as that in freshwater alkaline. This electrocatalyst exhibits superior catalytic properties with outstanding stability under a high current density of 85 mA cm-2 for more than 100 h in natural seawater, which outperforms state-of-the-art 20% Pt/C at high current density. Our work provides valuable guidelines for developing a low-cost and high-efficiency electrocatalyst for natural seawater splitting.
RESUMO
In this study, three carbon-based solid acid catalysts were prepared via the one-step hydrothermal procedure using glucose and Brønsted acid, including sulfuric acid, p-toluenesulfonic acid, or hydrochloric acid. The as-synthesized catalysts were tested for their ability to convert cellulose into valuable chemicals. The effects of Brønsted acidic catalyst, catalyst loading, solvent, temperature, time, and reactor on the reaction were investigated. The as-synthesized C-H2SO4 catalyst containing Brønsted acid sites (-SO3H, -OH, and -COOH functional groups) demonstrated high activity in the transformation of cellulose into valuable chemicals with the yield of total products of 88.17% including 49.79% LA in 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) solvent at 120 °C in 24 h. The recyclability and stability of C-H2SO4 were also observed. A proposed mechanism of cellulose conversion into valuable chemicals in the presence of C-H2SO4 was presented. The current method could provide a feasible approach for the conversion of cellulose into valuable chemicals.
RESUMO
The functionalization and incorporation of noble metals in metal-organic frameworks have been widely used as efficient methods to enhance their applicability. Herein, a sulfone-functionalized Zr-MOF framework labeled Zr-BPDC-SO2 (BPDC-SO2 =dibenzo[b,d]-thiophene-3,7-dicarboxylate 5,5-dioxide) and its Pd-embedded composite were efficiently synthesized by adjusting their functional groups. The obtained compounds were characterized to assess their potential for gas sensing applications. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, specific surface area measurements, and thermogravimetric analysis were employed to characterize the new sensor materials. The gas sensing properties of the novel functionalized sensor materials were systematically investigated under various temperature, concentration, and gas type conditions. Owing to the strong hydrogen bonds of the sulfonyl groups and Zr6 clusters in the framework with the hydroxyl groups of ethanol, Zr-BPDC-SO2 emerged as an effective sensor for ethanol detection. In addition, Pd@Zr-BPDC-SO2 exhibited efficient hydrogen sensing performance, in terms of sensor dynamics and response. More importantly, the material showed a higher sensing response to hydrogen than to other gases, highlighting the important role of Pd in the Zr-MOF-based hydrogen sensor. The results of the sensing tests carried out in this study highlight the promising potential of the present materials for practical gas monitoring applications.
RESUMO
Biodegradable periodic mesoporous organosilica nanoparticles (B-PMO) are an outstanding nanocarrier due to their biodegradability and high drug load capacities. The present study describes a synthesis of a phenylene-containing tetrasulfide based B-PMO, named P4S. The incorporation of aromatic phenylene groups into the framework creates a strong interaction between nanoparticles (NPs) with aromatic rings in the cordycepin molecules. This results in the low release profile under various conditions. In addition, the replacement of this linker slowed the degradation of nanoparticles. The physicochemical properties of the nanoparticles are evaluated and compared with a biodegradable ethane-containing tetrasulfide based PMO and a non-degradable MCM-41. The biodegradability of P4S is also demonstrated in a reducing environment and the 100 nm spherical nanoparticles completely decomposed within 14 days. The porous structure of P4S has a high loading of hydrophilic cordycepin (approximately 731.52 mg g-1) with a slow releasing speed. The release rates of P4S NPs are significantly lower than other materials, such as liposomes, gelatin nanoparticles, and photo-crosslinked hyaluronic acid methacrylate hydrogels, in the same solution. This specific release behavior could guarantee drug therapeutic effects with minimum side-effects and optimized drug dosages. Most importantly, according to the in vitro cytotoxicity study, cordycepin-loaded P4S NPs could retain the toxicity against liver cancer cell (HepG2) while suppressed the cytotoxicity against normal cells (BAEC).