Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(9): 11453-11466, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38404195

RESUMO

The development of highly active acid-base catalysts for transfer hydrogenations of biomass derived carbonyl compounds is a pressing challenge. Solid frustrated Lewis pairs (FLP) catalysis is possibly a solution, but the development of this concept is still at a very early stage. Herein, stable, phase-pure, crystalline hydrotalcite-like compounds were synthesized by incorporating cerium cations into layered double hydroxide (MgAlCe-LDH). Besides the insertion of well-isolated cerium centers surrounded by hydroxyl groups, the formation of hydroxyl vacancies near the aluminum centers, which were formed by the insertion of cerium centers into the layered double hydroxides (LDH) lattice, was also identified. Depending on the initial cerium concentration, LDHs with different Ce(III)/Ce(IV) ratios were produced, which had Lewis acidic and basic characters, respectively. However, the acid-base character of these LDHs was related to the actual Ce(III)/Ce(IV) molar ratios, resulting in significant differences in their catalytic performance. The as-prepared structures enabled varying degrees of transfer hydrogenation (Meerwein-Ponndorf-Verley MPV reduction) of biomass-derived carbonyl compounds to the corresponding alcohols without the collapse of the original lamellar structure of the LDH. The catalytic markers through the test reactions were changed as a function of the amount of Ce(III) centers, indicating the active role of Ce(III)-OH units. However, the cooperative interplay between the active sites of Ce(III)-containing specimens and the hydroxyl vacancies was necessary to maximize catalytic efficiency, pointing out that Ce-containing LDH is a potentially commercial solid FLP catalysts. Furthermore, the crucial role of the surface hydroxyl groups in the MPV reactions and the negative impact of the interlamellar water molecules on the catalytic activity of MgAlCe-LDH were demonstrated. These solid FLP-like catalysts exhibited excellent catalytic performance (cyclohexanol yield of 45%; furfuryl alcohol yield of 51%), which is competitive to the benchmark Sn- and Zr-containing zeolite catalysts, under mild reaction conditions, especially at low temperature (T = 65 °C).

2.
Expert Opin Biol Ther ; 23(11): 1137-1149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078403

RESUMO

BACKGROUND: Solid tumors are becoming prevalent affecting both old and young populations. Numerous solid tumors are associated with high cMET expression. The complexity of solid tumors combined with the highly interconnected nature of the cMET/HGF pathway with other cellular pathways make the pursuit of finding an effective treatment extremely challenging. The current standard of care for these malignancies is mostly small molecule-based chemotherapy. Antibody-based therapeutics as well as antibody drug conjugates are promising emerging classes against cMET-overexpressing solid tumors. RESEARCH DESIGN AND METHODS: In this study, we described the design, synthesis, in vitro and in vivo characterization of cMET-targeting Fab drug conjugates (FDCs) as an alternative therapeutic strategy. The format is comprised of a Fab conjugated to a potent cytotoxic drug via a cleavable linker employing lysine-based and cysteine-based conjugation chemistries. RESULTS: We found that the FDCs have potent anti-tumor efficacies in cancer cells with elevated overexpression of cMET. Moreover, they demonstrated a remarkable anti-tumor effect in a human gastric xenograft mouse model. CONCLUSIONS: The FDC format has the potential to overcome some of the challenges presented by the other classes of therapeutics. This study highlights the promise of antibody fragment-based drug conjugate formats for the treatment of solid tumors.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Animais , Camundongos , Imunoconjugados/uso terapêutico , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Anticorpos , Linhagem Celular Tumoral
3.
Polymers (Basel) ; 11(1)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30960161

RESUMO

In this study, chitosan nanoparticles were used as a carrier for Protocatechuic acid (PCA) to resist Pyricularia oryzae against rice blast. The final compound was characterized using zeta potentials for its surface electricity, Fourier transform infrared (FT-IR) analysis and transmission electron microscopy (TEM) were conducted for functional groups and for particle sizes and shape, respectively. The zeta potential results showed that loading PCA causes chitosan nanoparticle (CSNP) to decrease in surface electrons. The TEM images revealed that the particle size of chitosan (CS), although increasing in size when carrying PCA molecules, showed sufficient size for reasonable penetration into fungal cells. The FT-IR analysis showed that all functional group in CSNP carried PCA matched with previous studies. The antifungal test showed that diameters of inhibition zone of CS increases significantly after loading PCA, exhibiting the strongest antimicrobial effect on the Pyricularia oryzae fungus compared with weaker effects exhibited by CSNP alone or PCA. Our results suggested that CSNP loaded with PCA could be a potential compound for eradication of Pyricularia oryzae and that further testing on in vitro rice plants is recommended to reaffirm this possibility.

4.
Heliyon ; 4(11): e00966, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30533545

RESUMO

Four Cu-Mg-Al mixed metal oxides (MMO) were synthesized through the calcination of layered double hydroxides (LDHs). These catalysts were fully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller surface area (BET), and inductively coupled plasma optical emission spectrometer (ICP-OES). The catalytic efficiency of porous metal oxides derived from LDHs has been tested successfully for the synthesis of bis(indolyl)methanes via the Friedel-Crafts alkylation of indoles with aromatic aldehydes under solvent-free microwave irradiation. The Cu-Al MMO showed the best catalytic activity to produce the expected products up to 98% yield and 100% selectivity for only 20 min under solvent-free microwave irradiation. Moreover, the catalyst can be recovered quickly from the reaction mixture by filtration and reused several times without significant loss of the reactivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA