RESUMO
The extracellular isoform of superoxide dismutase (SOD3) is decreased in patients and animals with pulmonary hypertension (PH). The human R213G single-nucleotide polymorphism (SNP) in SOD3 causes its release from tissue extracellular matrix (ECM) into extracellular fluids, without modulating enzyme activity, increasing cardiovascular disease risk in humans and exacerbating chronic hypoxic PH in mice. Given the importance of interstitial macrophages (IMs) to PH pathogenesis, this study aimed to determine whether R213G SOD3 increases IM accumulation and alters IM reprogramming in response to hypoxia. R213G mice and wild-type (WT) controls were exposed to hypobaric hypoxia for 4 or 14 days compared with normoxia. Flow cytometry demonstrated a transient increase in IMs at day 4 in both strains. Contrary to our hypothesis, the R213G SNP did not augment IM accumulation. To determine strain differences in the IM reprogramming response to hypoxia, we performed RNAsequencing on IMs isolated at each timepoint. We found that IMs from R213G mice exposed to hypoxia activated ECM-related pathways and a combination of alternative macrophage and proinflammatory signaling. Furthermore, when compared with WT responses, IMs from R213G mice lacked metabolic remodeling and demonstrated a blunted anti-inflammatory response between the early (day 4) and later (day 14) timepoints. We confirmed metabolic responses using Agilent Seahorse assays, whereby WT, but not R213G, IMs upregulated glycolysis at day 4 that returned to baseline at day 14. Finally, we identify differential regulation of several redox-sensitive upstream regulators that could be investigated in future studies.NEW & NOTEWORTHY Redistributed expression of SOD3 out of tissue ECM due to the human R213G SNP exacerbates chronic hypoxic PH. Highlighting the importance of macrophage phenotype, our findings reveal that the R213G SNP does not exacerbate pulmonary macrophage accumulation in response to hypoxia but influences their metabolic and phenotypic reprogramming. We demonstrate a deficiency in the metabolic response to hypoxic stress in R213G macrophages, associated with weakened inflammatory resolution and activation of profibrotic pathways implicated in PH.
Assuntos
Hipóxia , Polimorfismo de Nucleotídeo Único , Superóxido Dismutase , Animais , Polimorfismo de Nucleotídeo Único/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Camundongos , Hipóxia/genética , Hipóxia/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Reprogramação Celular/genética , Masculino , Camundongos Endogâmicos C57BL , Humanos , Macrófagos/metabolismo , Pulmão/metabolismo , Matriz Extracelular/metabolismo , Macrófagos Alveolares/metabolismoRESUMO
Loss of ovarian function imparts increased susceptibility to obesity and metabolic disease. These effects are largely attributed to decreased estradiol (E2), but the role of increased follicle-stimulating hormone (FSH) in modulating energy balance has not been fully investigated. Previous work that blocked FSH binding to its receptor in mice suggested this hormone may play a part in modulating body weight and energy expenditure after ovariectomy (OVX). We used an alternate approach to isolate the individual and combined contributions of FSH and E2 in mediating energy imbalance and changes in tissue-level metabolic health. Female Wistar rats were ovariectomized and given the gonadotropin releasing hormone (GnRH) antagonist degarelix to suppress FSH production. E2 and FSH were then added back individually and in combination for a period of 3 wk. Energy balance, body mass composition, and transcriptomic profiles of individual tissues were obtained. In contrast to previous studies, suppression and replacement of FSH in our paradigm had no effect on body weight, body composition, food intake, or energy expenditure. We did, however, observe organ-specific effects of FSH that produced unique transcriptomic signatures of FSH in retroperitoneal white adipose tissue. These included reductions in biological processes related to lipogenesis and carbohydrate transport. In addition, rats administered FSH had reduced liver triglyceride concentration (P < 0.001), which correlated with FSH-induced changes at the transcriptomic level. Although not appearing to modulate energy balance after loss of ovarian function in rats, FSH may still impart tissue-specific effects in the liver and white adipose tissue that might affect the metabolic health of those organs.NEW & NOTEWORTHY We find no effect of follicle-stimulating hormone (FSH) on energy balance using a novel model in which rats are ovariectomized, subjected to gonadotropin-releasing hormone antagonism, and systematically given back FSH by osmotic pump. However, tissue-specific effects of FSH on adipose tissue and liver were observed in this study. These include unique transcriptomic signatures induced by the hormone and a stark reduction in hepatic triglyceride accumulation.
Assuntos
Metabolismo Energético , Estradiol , Hormônio Foliculoestimulante , Ovariectomia , Ratos Wistar , Animais , Feminino , Metabolismo Energético/efeitos dos fármacos , Ratos , Hormônio Foliculoestimulante/metabolismo , Estradiol/farmacologia , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Transcriptoma/efeitos dos fármacosRESUMO
Sirtuins are a family of proteins that regulate biological processes such as cellular stress and aging by removing posttranslational modifications (PTMs). We recently identified several novel PTMs that can be removed by sirtuin 4 (SIRT4), which is found in mitochondria. We showed that mice with a global loss of SIRT4 [SIRT4-knockout (KO) mice] developed an increase in glucose- and leucine-stimulated insulin secretion, and this was followed by accelerated age-induced glucose intolerance and insulin resistance. Because whole body SIRT4-KO mice had alterations to nutrient-stimulated insulin secretion, we hypothesized that SIRT4 plays a direct role in regulating pancreatic ß-cell function. Thus, we tested whether ß-cell-specific ablation of SIRT4 would recapitulate the elevated insulin secretion seen in mice with a global loss of SIRT4. Tamoxifen-inducible ß-cell-specific SIRT4-KO mice were generated, and their glucose tolerance and glucose- and leucine-stimulated insulin secretion were measured over time. These mice exhibited normal glucose- and leucine-stimulated insulin secretion and maintained normal glucose tolerance even as they aged. Furthermore, 832/13 ß-cells with a CRISPR/Cas9n-mediated loss of SIRT4 did not show any alterations in nutrient-stimulated insulin secretion. Despite the fact that whole body SIRT4-KO mice demonstrated an age-induced increase in glucose- and leucine-stimulated insulin secretion, our current data indicate that the loss of SIRT4 specifically in pancreatic ß-cells, both in vivo and in vitro, does not have a significant impact on nutrient-stimulated insulin secretion. These data suggest that SIRT4 controls nutrient-stimulated insulin secretion during aging by acting on tissues external to the ß-cell, which warrants further study.
Assuntos
Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Proteínas Mitocondriais/metabolismo , Sirtuínas/metabolismo , Animais , Glucose/farmacologia , Intolerância à Glucose/metabolismo , Resistência à Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Leucina/farmacologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Nutrientes , Processamento de Proteína Pós-TraducionalRESUMO
Pulmonary hypertension (PH) is a progressive disease marked by pulmonary vascular remodeling and right ventricular failure. Inflammation and oxidative stress are critical in PH pathogenesis, with early pulmonary vascular inflammation preceding vascular remodeling. Extracellular superoxide dismutase (EC-SOD), a key vascular antioxidant enzyme, mitigates oxidative stress and protects against inflammation and fibrosis in diverse lung and vascular disease models. This study utilizes a murine hypobaric hypoxia model to investigate the role of lung EC-SOD on hypoxia-induced platelet activation and platelet lung accumulation, a critical factor in PH-related inflammation. We found that lung EC-SOD overexpression blocked hypoxia-induced platelet activation and platelet accumulation in the lung. Though lung EC-SOD overexpression increased lung EC-SOD content, it did not impact plasma extracellular SOD activity. However, ex vivo, exogenous extracellular SOD treatment specifically blunted convulxin-induced platelet activation but did not blunt platelet activation with thrombin or ADP. Our data identify platelets as a novel target of EC-SOD in response to hypoxia, providing a foundation to advance the understanding of dysregulated redox signaling and platelet activation in PH and other chronic hypoxic lung diseases.
RESUMO
Many proteins display conformational changes resulting from allosteric regulation. Often only a few residues are crucial in conveying these structural and functional allosteric changes. These regions that undergo a significant change in structure upon receiving an input signal, such as molecular recognition, are defined as switch-like regions. Identifying these key residues within switch-like regions can help elucidate the mechanism of allosteric regulation and provide guidance for synthetic regulation. In this study, we combine a novel computational workflow with biochemical methods to identify a switch-like region in the N-terminal domain of human SIRT1 (hSIRT1), a lysine deacetylase that plays important roles in regulating cellular pathways. Based on primary sequence, computational methods predicted a region between residues 186-193 in hSIRT1 to exhibit switch-like behavior. Mutations were then introduced in this region and the resulting mutants were tested for allosteric reactions to resveratrol, a known hSIRT1 allosteric regulator. After fine-tuning the mutations based on comparison of known secondary structures, we were able to pinpoint M193 as the residue essential for allosteric regulation, likely by communicating the allosteric signal. Mutation of this residue maintained enzyme activity but abolished allosteric regulation by resveratrol. Our findings suggest a method to predict switch-like regions in allosterically regulated enzymes based on the primary sequence. If further validated, this could be an efficient way to identify key residues in enzymes for therapeutic drug targeting and other applications.