Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Res ; 257: 119345, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851370

RESUMO

The COVID-19 pandemic was caused by the SARS-CoV-2 virus, marking one of the most catastrophic global health crises of the 21st century. Throughout this period, widespread use and improper disposal of personal protective equipment (PPE) emerged as a pressing environmental issue, significantly impacting various life forms. During the COVID-19 pandemic, there was a high rate of PEP disposal. An alarming 1.6 × 106 tons of plastic waste each day has been generated since the onset of the outbreak, predominantly from the inadequate disposal of PPE. The mismanagement and subsequent degradation of discarded PPE significantly contribute to increased non-biodegradable micro(nano)plastic (MNP) waste. This pollution has had profound adverse effects on terrestrial, marine, and aquatic ecosystems, which have been extensively of concern recently. Accumulated MNPs within aquatic organisms could serve as a potential route for human exposure when consuming seafood. This review presents a novel aspect concerning the pollution caused by MNPs, particularly remarking on their role during the pandemic and their detrimental effects on human health. These microplastic particles, through the process of fragmentation, transform into nanoparticles, persisting in the environment and posing potential hazards. The prevalence of MNP from PPE, notably masks, raises concerns about their plausible health risks, warranting global attention and comprehensive exploration. Conducting a comprehensive evaluation of the long-term effects of these processes and implementing effective management strategies is essential.

2.
Blood ; 124(3): 420-5, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24916506

RESUMO

Addition of rituximab (R) to fludarabine and cyclophosphamide (FC) has significantly improved patient outcomes in chronic lymphocytic leukemia (CLL). Whether baseline gene expression can identify patients who will benefit from immunochemotherapy over chemotherapy alone has not been determined. We assessed genome-wide expression of 300 pretreatment specimens from a subset of 552 patients in REACH, a study of FC or R-FC in relapsed CLL. An independent test set was derived from 282 pretreatment specimens from CLL8, a study of FC or R-FC in treatment-naïve patients. Genes specific for benefit from R-FC were determined by assessing treatment-gene interactions in Cox proportional hazards models. REACH patients with higher pretreatment protein tyrosine kinase 2 (PTK2) messenger RNA levels derived greater benefit from R-FC, with significant improvements in progression-free survival, independent of known prognostic factors in a multivariate model. Examination of PTK2 gene expression in CLL8 patients yielded similar results. Furthermore, PTK2 inhibition blunted R-dependent cell death in vitro. This retrospective analysis from 2 independent trials revealed that increased PTK2 expression is associated with improved outcomes for CLL patients treated with R-FC vs FC. PTK2 expression may be a useful biomarker for patient selection in future trials. These trials were registered at www.clinicaltrials.gov as #NCT00090051 (REACH) and #NCT00281918 (CLL8).


Assuntos
Quinase 1 de Adesão Focal/genética , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/terapia , Anticorpos Monoclonais Murinos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Terapia Combinada , Ciclofosfamida/administração & dosagem , Intervalo Livre de Doença , Expressão Gênica , Humanos , Imunoterapia , Leucemia Linfocítica Crônica de Células B/enzimologia , Modelos de Riscos Proporcionais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Recidiva , Estudos Retrospectivos , Rituximab , Vidarabina/administração & dosagem , Vidarabina/análogos & derivados
3.
Nephrol Dial Transplant ; 29 Suppl 1: i30-i37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24493868

RESUMO

Kidney fibrosis is the common end point of chronic kidney disease independent of aetiology. Currently, no effective therapy exists to reduce kidney fibrosis. CCN2 appears to be an interesting candidate for anti-fibrotic drug targeting, because it holds a central position in the development of kidney fibrosis and interacts with a variety of factors that are involved in the fibrotic response, including transforming growth factor (TGF) ß and Bone morphogenetic proteins. Although CCN2 modifies many pathways, it does not appear to have a membrane receptor of its own. Numerous experimental and clinical studies lowering CCN2 bioavailability have shown promising results with minimal adverse side effects. This review aims to provide an overview of the current state of CCN2 research with a focus on anti-fibrotic therapy.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Animais , Fibrose/patologia , Humanos , Insuficiência Renal Crônica/patologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-37107732

RESUMO

Air traffic bans in response to the spread of the coronavirus have changed the sound situation of urban areas around airports. This study aimed to investigate the effect of this unprecedented event on the community response to noise before and after the international flight operation at Tan Son Nhat Airport (TSN) in March 2020. The "before" survey was conducted in August 2019, and the two "after" surveys were conducted in June and September 2020. Structural equation models (SEMs) for noise annoyance and insomnia were developed by linking the questionnaire items of the social surveys. The first effort aimed to achieve a common model of noise annoyance and insomnia, corresponding to the situation before and after the change, respectively. Approximately, 1200 responses were obtained from surveys conducted in 12 residential areas around TSN in 2019 and 2020. The average daily flight numbers observed in August 2019 during the two surveys conducted in 2020 were 728, 413, and 299, respectively. The sound pressure levels of the 12 sites around TSN decreased from 45-81 dB (mean = 64, SD = 9.8) in 2019 to 41-76 dB (mean = 60, SD = 9.8) and 41-73 dB (mean = 59, SD = 9.3) in June and September 2020, respectively. The SEM indicated that the residents' health was related to increased annoyance and insomnia.


Assuntos
Aviação , Ruído dos Transportes , Distúrbios do Início e da Manutenção do Sono , Humanos , Aeroportos , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Núcleo Familiar , Aeronaves , Exposição Ambiental
5.
Sci Total Environ ; 904: 166021, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37543323

RESUMO

In recent years, the COVID-19 pandemic is currently wreaking havoc on the planet. SARS-CoV-2, the Severe Acute Respiratory Syndrome Coronavirus, is the current term for this outbreak. Reports about this novel coronavirus have been presented since the pandemic's breakout, and they have demonstrated that it transmits rapidly from person to person, primarily by droplets in the air. Findings have illustrated that SARS-CoV-2 can survive on surfaces from hours to days. Therefore, it is essential to find practical solutions to reduce the virus's impact on human health and the environment. This work evaluated common sterilization methods that can decontaminate the environment and items. The goal is that healthcare facilities, disease prevention organizations, and local communities can overcome the new challenge of finding eco-friendly solutions. Further, a foundation of information encompassing various sterilization procedures and highlighting their limits to choose the most appropriate method to stop disease-causing viruses in the new context has been presented. The findings of this crucial investigation contribute to gaining insight into the comprehensive sterilization approaches against the coronavirus for human health protection and sustainable environmental development.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Descontaminação/métodos , Esterilização
6.
Sci Total Environ ; 904: 166649, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660815

RESUMO

Micro- and nano-plastics (MNPs) have received considerable attention over the past 10 years due to their environmental prevalence and potential toxic effects. With the increase in global plastic production and disposal, MNP pollution has become a topic of emerging concern. In this review, we describe MNPs in the atmospheric environment, and potential toxicological effects of exposure to MNPs. Studies have reported the occurrence of MNPs in outdoor and indoor air at concentrations ranging from 0.0065 items m-3 to 1583 items m-3. Findings have identified plastic fragments, fibers, and films in sizes predominantly <1000 µm with polyamide (PA), polyester (PES), polyethylene terephthalate (PET), polypropylene (PP), rayon, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyacrylonitrile (PAN), and ethyl vinyl acetate (EVA) as the major compounds. Exposure through indoor air and dust is an important pathway for humans. Airborne MNPs pose health risks to plants, animals, and humans. Atmospheric MNPs can enter organism bodies via inhalation and subsequent deposition in the lungs, which triggers inflammation and other adverse health effects. MNPs could be eliminated through source reduction, policy/regulation, environmental awareness and education, biodegradable materials, bioremediation, and efficient air-filtration systems. To achieve a sustainable society, it is crucial to implement effective strategies for reducing the usage of single-use plastics (SUPs). Further, governments play a pivotal role in addressing the pressing issue of MNPs pollution and must establish viable solutions to tackle this significant challenge.


Assuntos
Microplásticos , Plásticos , Humanos , Animais , Plásticos/toxicidade , Poluição Ambiental , Atmosfera , Comportamento de Redução do Risco
7.
Sci Total Environ ; 899: 165323, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37422238

RESUMO

In recent years, pharmaceutical active compounds (PhACs) have attained global prevalence. The behavior of PhACs in agricultural soils is complex and depends on several factors, such as the nature of the compounds and their physicochemical characteristics, which affect their fate and potential threats to human health, ecosystems, and the environment. The detection of residual pharmaceutical content is possible in both agricultural soils and environmental matrices. PhACs are commonly found in agricultural soil, with concentrations varying significantly, ranging from as low as 0.048 ng g-1 to as high as 1420.76 mg kg-1. The distribution and persistence of PhACs in agriculture can lead to the leaching of these toxic pollutants into surface water, groundwater, and vegetables/plants, resulting in human health risks and environmental pollution. Biological degradation or bioremediation plays a critical role in environmental protection and efficiently eliminates contamination by hydrolytic and/or photochemical reactions. Membrane bioreactors (MBRs) have been investigated as the most recent approach for the treatment of emerging persistent micropollutants, including PhACs, from wastewater sources. MBR- based technologies have proven to be effective in eliminating pharmaceutical compounds, achieving removal rates of up to 100%. This remarkable outcome is primarily facilitated by the processes of biodegradation and metabolization. In addition, phytoremediation (i.e., constructed wetlands), microalgae-based technologies, and composting can be highly efficient in remediating PhACs in the environment. The exploration of key mechanisms involved in pharmaceutical degradation has revealed a range of approaches, such as phytoextraction, phytostabilization, phytoaccumulation, enhanced rhizosphere biodegradation, and phytovolatilization. The well-known advanced/tertiary removal of sustainable sorption by biochar, activated carbon, chitosan, etc. has high potential and yields excellent quality effluents. Adsorbents developed from agricultural by-products have been recognized to eliminate pharmaceutical compounds and are cost-effective and eco-friendly. However, to reduce the potentially harmful impacts of PhACs, it is necessary to focus on advanced technologies combined with tertiary processes that have low cost, high efficiency, and are energy-saving to remove these emerging pollutants for sustainable development.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Eliminação de Resíduos Líquidos/métodos , Ecossistema , Poluentes Químicos da Água/análise , Agricultura , Solo , Preparações Farmacêuticas
8.
Sci Total Environ ; 844: 157066, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35787905

RESUMO

Vietnam is known as one of the high plastic consumption countries in Southeast Asia. This study initially determined characteristics of microplastics (MPs) including morphology, polymer type, and abundance at peatland areas in Mekong Delta in Vietnam. The MPs level was found with an average abundance of 192.3 ± 261.3 items kg-1. In details, those values at Thanh Hoa, Duc Hue, and Tan Thanh were observed at 57.0 ± 110.4 items kg-1, 7.0 ± 10.6 items kg-1, and 513.0 ± 186.9 items kg-1, respectively. The results indicated that MP particle contaminations in peatland sediments are significant among sampling sites (p < 0.001). Also, FT-IR analysis indicated that polyvinyl chloride is the primary polymer (46.2 %), followed by polyethylene (20.9 %), and polypropylene (9.2 %) in peatland samples and their composition varies in different regions significantly. The fragments (67.0 %) and films (24.6 %) were the most common shapes, followed by fibers (7.6 %) and foams (0.9 %). Small MPs with particle size (300-1000 µm) was the most abundant in sediment samples. Moreover, the most popular colors observed in peatland sediments were aqua (26.6 %), white (25.6 %), blue (25.4 %), and green (12.7 %). Our findings indicated that anthropogenic factors and environmental processes that caused the transformation/transportation and accumulation, leading to rising MP contaminant concerns in peatland areas in Mekong Delta in Vietnam, mainly in terms of the spatial distribution of MPs. In summary, this study provided an in-depth knowledge of microplastic pollution in peatland areas, which is crucial for the building sustainable development strategies in these areas.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Vietnã , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA