Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(31): 9675-9682, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39058271

RESUMO

Feeding silkworms with functional materials as additives to produce naturally modified silk is a facile, diverse, controllable, and environmentally friendly method with a low cost of time and investment. Among various additives, carbon dots (CDs) show unique advantages due to their excellent biocompatibility and fluorescence stability. Here, a new type of green fluorescent carbon dots (G-CDs) is synthesized with a high oil-water partition ratio of 147, a low isoelectric point of 5.16, an absolute quantum yield of 71%, and critically controlled surface states. After feeding with G-CDs, the silkworms weave light yellow cocoons whose green fluorescence is visible to the naked eye under UV light. The luminous silk is sewn onto the cloth to create striking patterns with beautiful fluorescence. Such G-CDs have no adverse effect on the survival rate and the life cycle of silkworms and enable their whole bodies to glow under UV light. Based on the strong fluorescence, chemical stability, and biological safety, G-CDs are found in the digestive tracts, silk glands, feces, cocoons, and even moth bodies. G-CDs accumulate in the posterior silk glands where fibroin protein is secreted, indicating its stronger combination with fibroin than sericin, which meets the requirements for practical applications.


Assuntos
Bombyx , Carbono , Pontos Quânticos , Seda , Animais , Seda/química , Carbono/química , Pontos Quânticos/química , Fibroínas/química , Raios Ultravioleta , Fluorescência , Corantes Fluorescentes/química , Propriedades de Superfície
2.
J Transl Med ; 22(1): 477, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764038

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a malignant tumor with a poor prognosis. Traditional treatments have limited effectiveness. Regulation of the immune response represents a promising new approach for OSCC treatment. B cells are among the most abundant immune cells in OSCC. However, the role of B cells in OSCC treatment has not been fully elucidated. METHODS: Single-cell RNA sequencing analysis of 13 tissues and 8 adjacent normal tissues from OSCC patients was performed to explore differences in B-cell gene expression between OSCC tissues and normal tissues. We further investigated the relationship between differentially expressed genes and the immune response to OSCC. We utilized tissue microarray data for 146 OSCC clinical samples and RNA sequencing data of 359 OSCC samples from The Cancer Genome Atlas (TCGA) to investigate the role of T-cell leukemia 1 A (TCL1A) in OSCC prognosis. Multiplex immunohistochemistry (mIHC) was employed to investigate the spatial distribution of TCL1A in OSCC tissues. We then investigated the effect of TCL1A on B-cell proliferation and trogocytosis. Finally, lentiviral transduction was performed to induce TCL1A overexpression in B lymphoblastoid cell lines (BLCLs) to verify the function of TCL1A. RESULTS: Our findings revealed that TCL1A was predominantly expressed in B cells and was associated with a better prognosis in OSCC patients. Additionally, we found that TCL1A-expressing B cells are located at the periphery of lymphatic follicles and are associated with tertiary lymphoid structures (TLS) formation in OSCC. Mechanistically, upregulation of TCL1A promoted the trogocytosis of B cells on dendritic cells by mediating the upregulation of CR2, thereby improving antigen-presenting ability. Moreover, the upregulation of TCL1A expression promoted the proliferation of B cells. CONCLUSION: This study revealed the role of B-cell TCL1A expression in TLS formation and its effect on OSCC prognosis. These findings highlight TCL1A as a novel target for OSCC immunotherapy.


Assuntos
Linfócitos B , Carcinoma de Células Escamosas , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais , Proteínas Proto-Oncogênicas , Estruturas Linfoides Terciárias , Humanos , Prognóstico , Neoplasias Bucais/patologia , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/imunologia , Estruturas Linfoides Terciárias/patologia , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/metabolismo , Linfócitos B/metabolismo , Linfócitos B/imunologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/metabolismo , Feminino , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Masculino , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Proliferação de Células
3.
Opt Express ; 32(4): 5117-5130, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439246

RESUMO

Photon blockade (PB) is an important quantum phenomenon in cavity quantum electrodynamics (QED). Here, we investigate the PB effect in the simplest cavity QED systems (one cavity containing first a single atom and then two atoms), where only the atoms are weakly driven. Via the analytical calculation and numerical simulation, we show that the strong PB can be generated even with the weak-coupling regime at the total resonance. This blockade is ascribed to the two-photon absorption, which is fundamentally different from the conventional and unconventional blockade mechanisms. Therefore, our study provides an alternative approach to produce the PB in the atom-driven cavity QED system.

4.
Acta Pharmacol Sin ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147900

RESUMO

The pyroptosis of renal tubular epithelial cells leads to tubular loss and inflammation and then promotes renal fibrosis. The transcription factor Krüppel-like factor 4 (KLF4) can bidirectionally regulate the transcription of target genes. Our previous study revealed that sustained elevation of KLF4 is responsible for the transition of acute kidney injury (AKI) into chronic kidney disease (CKD) and renal fibrosis. In this study, we explored the upstream mechanisms of renal tubular epithelial cell pyroptosis from the perspective of posttranslational regulation and focused on the transcription factor KLF4. Mice were subjected to unilateral ureteral obstruction (UUO) surgery and euthanized on D7 or D14 for renal tissue harvesting. We showed that the pyroptosis of renal tubular epithelial cells mediated by both the Caspase-1/GSDMD and Caspase-3/GSDME pathways was time-dependently increased in UUO mouse kidneys. Furthermore, we found that the expression of the transcription factor KLF4 was also upregulated in a time-dependent manner in UUO mouse kidneys. Tubular epithelial cell-specific Klf4 knockout alleviated UUO-induced pyroptosis and renal fibrosis. In Ang II-treated mouse renal proximal tubular epithelial cells (MTECs), we demonstrated that KLF4 bound to the promoter regions of Caspase-3 and Caspase-1 and directly increased their transcription. In addition, we found that ubiquitin-specific protease 11 (USP11) was increased in UUO mouse kidneys. USP11 deubiquitinated KLF4. Knockout of Usp11 or pretreatment with the USP11 inhibitor mitoxantrone (3 mg/kg, i.p., twice a week for two weeks before UUO surgery) significantly alleviated the increases in KLF4 expression, pyroptosis and renal fibrosis. These results demonstrated that the increased expression of USP11 in renal tubular cells prevents the ubiquitin degradation of KLF4 and that elevated KLF4 promotes inflammation and renal fibrosis by initiating tubular cell pyroptosis.

5.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792209

RESUMO

Ganoderma lucidum spore powder, valued for its nutritional and medicinal properties, contains polysaccharides crucial for its efficacy. However, the complex structural nature of these polysaccharides necessitates further investigation to fully realize their potential. This study aimed to investigate the effects of acid heat treatment on Ganoderma lucidum spore polysaccharides (GLSPs) to enhance their properties and application in antitumor activity. The GLSP was obtained via acid heat treatment, concentration, and centrifugal separation. This process led to a notable reduction in polysaccharide molecular weight, increasing water solubility and bioavailability. Analytical techniques including NMR spectroscopy and methylation analysis revealed a polysaccharide composition comprising four distinct monosaccharides, with molecular weights of 3291 Da (Mw) and 3216 Da (Mn). Six different linkage modes were identified, with a molar ratio of 1:5:2:3:4:3. In vivo experiments demonstrated the GLSP's significant inhibitory effect on the growth of four tumor models (sarcoma S180, Lewis lung cancer, liver cancer H22, and colon cancer C26) in mice, with no observed toxicity. These findings suggest the GLSP's potential as an antitumor therapeutic agent for clinical use.


Assuntos
Antineoplásicos , Reishi , Esporos Fúngicos , Animais , Reishi/química , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Linhagem Celular Tumoral , Peso Molecular
6.
Small ; 19(31): e2205558, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36650986

RESUMO

Aqueous zinc-ion batteries (ZIBs) using the Zn metal anode have been considered as one of the next-generation commercial batteries with high security, robust capacity, and low price. However, parasitic reactions, notorious dendrites and limited lifespan still hamper their practical applications. Herein, an eco-friendly nitrogen-doped and sulfonated carbon dots (NSCDs) is designed as a multifunctional additive for the cheap aqueous ZnSO4 electrolyte, which can overcome the above difficulties effectively. The abundant polar groups (-COOH, -OH, -NH2 , and -SO3 H) on the CDs surfaces can regulate the solvation structure of Zn2+ through decreasing the coordinated active H2 O molecules, and thus redistribute Zn2+ deposition to avoid side reactions. Some of the negatively charged NSCDs are adsorbed on Zn anode surface to isolate the H2 O/SO4 2- corrosion through the electrostatic shielding effect. The synergistic effect of the doped nitrogen species and the surface sulfonic groups can induce a uniform electrolyte flux and a homogeneous Zn plating with a (002) texture. As a result, the excellent cycle life (4000 h) and Coulombic efficiency (99.5%) of the optimized ZIBs are realized in typical ZnSO4 electrolytes with only 0.1 mg mL-1 of NSCDs additive.

7.
Acta Pharmacol Sin ; 44(3): 584-595, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36045219

RESUMO

Transforming growth factor-ß1 (TGF-ß1) is regarded as a key factor in promoting renal fibrosis during chronic kidney disease (CKD). Signaling transduction of TGF-ß1 starts with binding to TGF-ß type II receptor (Tgfbr2), a constitutively activated kinase that phosphorylates TGF-ß type I receptor (Tgfbr1), and then activates downstream Smad2/3 or noncanonical pathways. Previous studies show that cellular senescence is associated with the progression of CKD, and accelerated tubular cell senescence is implicated in promoting renal fibrosis. In the present study we investigated the renal parenchymal cell senescence in fibrosis from the sight of posttranslational regulation and focused on Tgfbr2, the important gatekeeper for TGF-ß1 downstream signaling. In mice with unilateral ureteral obstruction (UUO) and folic acid (FA)-induced fibrotic kidneys, we found that Tgfbr2 was markedly elevated without obvious change in its mRNA levels. As an important member of deubiquitinating enzymes, ubiquitin-specific protease 11 (Usp11) was also significantly increased in fibrotic kidneys, and co-distributed with Tgfbr2 in tubular epithelial cells. Pretreatment with Usp11 inhibitor mitoxantrone (MTX, 30 mg · kg-1 · d-1, i.p.) twice a week, for 2 weeks significantly attenuated the elevation of Tgfbr2, activation in downstream senescence-related signaling pathway, as well as renal senescence and fibrosis. In cultured mouse tubular epithelial cells (MTECs), treatment with angiotensin II (Ang-II, 10-7, 10-6 M) dose-dependently elevated both Tgfbr2 and Usp11 levels. Inhibition or knockdown on Usp11 attenuated Ang-II-induced elevation in Tgfbr2 level, and attenuated the activation of downstream senescent-related signaling pathway and as well as cell senescence. We conducted Co-IP experiments, which revealed that Usp11 was able to interact with Tgfbr2, and inhibition of Usp11 increased the ubiquitination of Tgfbr2. Taken together, these results demonstrate that the elevation of Usp11 under pathological condition is implicated in promoting renal fibrosis. Usp11 promotes the development of renal fibrosis by deubiquitinating Tgfbr2, reducing Tgfbr2 ubiquitination degradation, and then facilitating the activation of downstream senescent signaling pathway.


Assuntos
Senescência Celular , Enzimas Desubiquitinantes , Insuficiência Renal Crônica , Animais , Camundongos , Senescência Celular/fisiologia , Enzimas Desubiquitinantes/metabolismo , Células Epiteliais/metabolismo , Fibrose/metabolismo , Rim/patologia , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta1/metabolismo , Ubiquitina/metabolismo , Obstrução Ureteral/complicações
8.
Acta Pharmacol Sin ; 44(6): 1191-1205, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36627345

RESUMO

UDP-glucose ceramide glucosyltransferase (UGCG) is the first key enzyme in glycosphingolipid (GSL) metabolism that produces glucosylceramide (GlcCer). Increased UGCG synthesis is associated with cell proliferation, invasion and multidrug resistance in human cancers. In this study we investigated the role of UGCG in the pathogenesis of hepatic fibrosis. We first found that UGCG was over-expressed in fibrotic livers and activated hepatic stellate cells (HSCs). In human HSC-LX2 cells, inhibition of UGCG with PDMP or knockdown of UGCG suppressed the expression of the biomarkers of HSC activation (α-SMA and collagen I). Furthermore, pretreatment with PDMP (40 µM) impaired lysosomal homeostasis and blocked the process of autophagy, leading to activation of retinoic acid signaling pathway and accumulation of lipid droplets. After exploring the structure and key catalytic residues of UGCG in the activation of HSCs, we conducted virtual screening, molecular interaction and molecular docking experiments, and demonstrated salvianolic acid B (SAB) from the traditional Chinese medicine Salvia miltiorrhiza as an UGCG inhibitor with an IC50 value of 159 µM. In CCl4-induced mouse liver fibrosis, intraperitoneal administration of SAB (30 mg · kg-1 · d-1, for 4 weeks) significantly alleviated hepatic fibrogenesis by inhibiting the activation of HSCs and collagen deposition. In addition, SAB displayed better anti-inflammatory effects in CCl4-induced liver fibrosis. These results suggest that UGCG may represent a therapeutic target for liver fibrosis; SAB could act as an inhibitor of UGCG, which is expected to be a candidate drug for the treatment of liver fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Camundongos , Humanos , Animais , Simulação de Acoplamento Molecular , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado/metabolismo , Colágeno Tipo I/metabolismo
9.
Curr Osteoporos Rep ; 21(2): 128-146, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36862360

RESUMO

PURPOSE OF REVIEW: To review the role of the immune cells and their interaction with cells found in gingiva, periodontal ligament, and bone that leads to net bone loss in periodontitis or bone remodeling in orthodontic tooth movement. RECENT FINDINGS: Periodontal disease is one of the most common oral diseases causing inflammation in the soft and hard tissues of the periodontium and is initiated by bacteria that induce a host response. Although the innate and adaptive immune response function cooperatively to prevent bacterial dissemination, they also play a major role in gingival inflammation and destruction of the connective tissue, periodontal ligament, and alveolar bone characteristic of periodontitis. The inflammatory response is triggered by bacteria or their products that bind to pattern recognition receptors that induce transcription factor activity to stimulate cytokine and chemokine expression. Epithelial, fibroblast/stromal, and resident leukocytes play a key role in initiating the host response and contribute to periodontal disease. Single-cell RNA-seq (scRNA-seq) experiments have added new insight into the roles of various cell types in the response to bacterial challenge. This response is modified by systemic conditions such as diabetes and smoking. In contrast to periodontitis, orthodontic tooth movement (OTM) is a sterile inflammatory response induced by mechanical force. Orthodontic force application stimulates acute inflammatory responses in the periodontal ligament and alveolar bone stimulated by cytokines and chemokines that produce bone resorption on the compression side. On the tension side, orthodontic forces induce the production of osteogenic factors, stimulating new bone formation. A number of different cell types, cytokines, and signaling/pathways are involved in this complex process. Inflammatory and mechanical force-induced bone remodeling involves bone resorption and bone formation. The interaction of leukocytes with host stromal cells and osteoblastic cells plays a key role in both initiating the inflammatory events as well as inducing a cellular cascade that results in remodeling in orthodontic tooth movement or in tissue destruction in periodontitis.


Assuntos
Reabsorção Óssea , Periodontite , Humanos , Osteoclastos/metabolismo , Técnicas de Movimentação Dentária , Reabsorção Óssea/metabolismo , Periodontite/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo
10.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298153

RESUMO

RNA editing is the process of modifying RNA molecules by inserting, deleting, or substituting nucleotides. In flowering plants, RNA editing occurs predominantly in RNAs encoded by the organellar genomes of mitochondria and chloroplasts, and the main type of editing involves the substitution of cytidine with uridine at specific sites. Abnormal RNA editing in plants can affect gene expression, organelle function, plant growth, and reproduction. In this study, we report that ATPC1, the gamma subunit of ATP synthase in Arabidopsis chloroplasts, has an unexpected role in the regulation of editing at multiple sites of plastid RNAs. The loss of function of ATPC1 severely arrests chloroplast development, causing a pale-green phenotype and early seedling lethality. Disruption of ATPC1 increases the editing of matK-640, rps12-i-58, atpH-3'UTR-13210, and ycf2-as-91535 sites while decreasing the editing of rpl23-89, rpoA-200, rpoC1-488, and ndhD-2 sites. We further show that ATPC1 participates in RNA editing by interacting with known multiple-site chloroplast RNA editing factors, including MORFs, ORRM1, and OZ1. The transcriptome in the atpc1 mutant is profoundly affected, with a pattern of defective expression of chloroplast development-related genes. These results reveal that the ATP synthase γ subunit ATPC1 is involved in multiple-site RNA editing in Arabidopsis chloroplasts.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , ATPases de Cloroplastos Translocadoras de Prótons , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Óxido Nítrico Sintase/metabolismo , Edição de RNA , RNA de Plantas/genética , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo
11.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511053

RESUMO

Gingival-derived mesenchymal stem cells (GMSCs) have strong self-renewal, multilineage differentiation, and immunomodulatory properties and are expected to be applied in anti-inflammatory and tissue regeneration. However, achieving the goal of using endogenous stem cells to treat diseases and even regenerate tissues remains a challenge. Resveratrol is a natural compound with multiple biological activities that can regulate stem cell immunomodulation when acting on them. This study found that resveratrol can reduce inflammation in human gingival tissue and upregulate the stemness of GMSCs in human gingiva. In cell experiments, it was found that resveratrol can reduce the expression of TLR4, TNFα, and NFκB and activate ERK/Wnt crosstalk, thereby alleviating inflammation, promoting the proliferation and osteogenic differentiation ability of GMSCs, and enhancing their immunomodulation. These results provide a new theoretical basis for the application of resveratrol to activate endogenous stem cells in the treatment of diseases in the future.


Assuntos
Gengiva , Periodontite , Resveratrol , Humanos , Diferenciação Celular , Células Cultivadas , Gengiva/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Osteogênese , Periodontite/tratamento farmacológico , Resveratrol/farmacologia , Resveratrol/uso terapêutico
12.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835162

RESUMO

As the greatest defense organ of the body, the skin is exposed to endogenous and external stressors that produce reactive oxygen species (ROS). When the antioxidant system of the body fails to eliminate ROS, oxidative stress is initiated, which results in skin cellular senescence, inflammation, and cancer. Two main possible mechanisms underlie oxidative stress-induced skin cellular senescence, inflammation, and cancer. One mechanism is that ROS directly degrade biological macromolecules, including proteins, DNA, and lipids, that are essential for cell metabolism, survival, and genetics. Another one is that ROS mediate signaling pathways, such as MAPK, JAK/STAT, PI3K/AKT/mTOR, NF-κB, Nrf2, and SIRT1/FOXO, affecting cytokine release and enzyme expression. As natural antioxidants, plant polyphenols are safe and exhibit a therapeutic potential. We here discuss in detail the therapeutic potential of selected polyphenolic compounds and outline relevant molecular targets. Polyphenols selected here for study according to their structural classification include curcumin, catechins, resveratrol, quercetin, ellagic acid, and procyanidins. Finally, the latest delivery of plant polyphenols to the skin (taking curcumin as an example) and the current status of clinical research are summarized, providing a theoretical foundation for future clinical research and the generation of new pharmaceuticals and cosmetics.


Assuntos
Carcinogênese , Senescência Celular , Inflamação , Estresse Oxidativo , Polifenóis , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Senescência Celular/fisiologia , Curcumina/farmacologia , Inflamação/metabolismo , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
13.
Cities ; 135: 104212, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36844194

RESUMO

The outbreak of COVID-19 has underscored the vulnerability of our current food systems. In China, following a series of strategies in guaranteeing food security in the past decades, the pandemic has further highlighted the necessity to strengthen urban-rural linkages and facilitate the sustainable development of local agri-food systems. The study for the first time introduced the City Region Food Systems (CRFS) approach to Chinese cities and attempted to holistically structure, analyze and promote the sustainability of local food systems in China. Taking Chengdu as an example, the study first took stock of existing concepts and policies in China and the city, and defined the high-quality development goals of CRFS for Chengdu. An indicator framework was then developed to serve as a CRFS assessment tool for identifying existing challenges and potentials of local food systems. Further, a rapid CRFS scan using the framework was conducted in Chengdu Metropolitan Area, providing concrete evidence for potential policy interventions and practice improvement in the area. The study has explored new paradigm of analysis for food related issues in China and provided supporting tools for evidence-based food planning in cities, which collectively contribute to the food system transformation in a post-pandemic scenario.

14.
J Transl Med ; 20(1): 574, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482390

RESUMO

BACKGROUND: This study aimed to develop a radiogenomic prognostic prediction model for colorectal cancer (CRC) by investigating the biological and clinical relevance of intratumoural heterogeneity. METHODS: This retrospective multi-cohort study was conducted in three steps. First, we identified genomic subclones using unsupervised deconvolution analysis. Second, we established radiogenomic signatures to link radiomic features with prognostic subclone compositions in an independent radiogenomic dataset containing matched imaging and gene expression data. Finally, the prognostic value of the identified radiogenomic signatures was validated using two testing datasets containing imaging and survival information collected from separate medical centres. RESULTS: This multi-institutional retrospective study included 1601 patients (714 females and 887 males; mean age, 65 years ± 14 [standard deviation]) with CRC from 5 datasets. Molecular heterogeneity was identified using unsupervised deconvolution analysis of gene expression data. The relative prevalence of the two subclones associated with cell cycle and extracellular matrix pathways identified patients with significantly different survival outcomes. A radiogenomic signature-based predictive model significantly stratified patients into high- and low-risk groups with disparate disease-free survival (HR = 1.74, P = 0.003). Radiogenomic signatures were revealed as an independent predictive factor for CRC by multivariable analysis (HR = 1.59, 95% CI:1.03-2.45, P = 0.034). Functional analysis demonstrated that the 11 radiogenomic signatures were predominantly associated with extracellular matrix and immune-related pathways. CONCLUSIONS: The identified radiogenomic signatures might be a surrogate for genomic signatures and could complement the current prognostic strategies.


Assuntos
Neoplasias Colorretais , Genômica , Humanos , Idoso , Estudos Retrospectivos , Estudos de Coortes , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/genética , Tomografia Computadorizada por Raios X
15.
Acta Pharmacol Sin ; 43(1): 86-95, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33758356

RESUMO

Ischemia/reperfusion (I/R) injury is a major cause of acute kidney injury (AKI) in clinic. The activation of NLRP3 inflammasome is associated with inflammation and renal injury in I/R-induced AKI. In the current study we explored the molecular and cellular mechanisms for NLRP3 inflammasome activation following renal I/R. Mice were subjected to I/R renal injury by clamping bilateral renal pedicles. We showed that I/R injury markedly increased caspase-11 expression and the cleavage of pannexin 1 (panx1) in the kidneys accompanied by NLRP3 inflammasome activation evidenced by the activation of caspase-1 and interlukin-1ß (IL-1ß) maturation. In Casp-11-/- mice, I/R-induced panx1 cleavage, NLRP3 inflammasome activation as well as renal functional deterioration and tubular morphological changes were significantly attenuated. In cultured primary tubular cells (PTCs) and NRK-52E cells, hypoxia/reoxygenation (H/R) markedly increased caspase-11 expression, NLRP3 inflammasome activation, IL-1ß maturation and panx1 cleavage. Knockdown of caspase-11 attenuated all those changes; similar effects were observed in PTCs isolated from Casp-11-/- mice. In NRK-52E cells, overexpression of caspase-11 promoted panx1 cleavage; pretreatment with panx1 inhibitor carbenoxolone or knockdown of panx1 significantly attenuated H/R-induced intracellular ATP reduction, extracellular ATP elevation and NLRP3 inflammasome activation without apparent influence on H/R-induced caspase-11 increase; pretreatment with P2X7 receptor inhibitor AZD9056 also attenuated NLRP3 inflammasome activation. The above results demonstrate that the cleavage of panx1 by upregulated caspase-11 is involved in facilitating ATP release and then NLRP3 inflammasome activation in I/R-induced AKI. This study provides new insight into the molecular mechanism of NLRP3 inflammasome activation in AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Caspases Iniciadoras/metabolismo , Conexinas/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/patologia , Animais , Caspases Iniciadoras/deficiência , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Molecular , Traumatismo por Reperfusão/patologia , Relação Estrutura-Atividade
16.
Anesth Analg ; 135(4): 837-844, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35426836

RESUMO

BACKGROUND: Because it is traditionally difficult and time-consuming to identify the foramen ovale (FO) with fluoroscopy, we recently developed the H-figure method to acquire fluoroscopic view of FO with shorter procedure time and less radiation. However, the impact of such an H-figure approach on the clinical outcomes of trigeminal ganglion radiofrequency thermocoagulation (RFT) in treating idiopathic trigeminal neuralgia (ITN) remains unclear. METHODS: In a 12-month follow-up retrospective cohort study, patients with ITN had fluoroscopy-guided RFT of trigeminal ganglion via either classic approach (n = 100) or H-figure approach (n = 136) to identify FO. Data of continuous variables were analyzed with a Shapiro-Wilk test for normality and subsequently with a Mann-Whitney test, and the binary data were analyzed with a χ 2 test. The primary outcome was the facial pain measured by a Visual Analog Scale (VAS) 1 year after the treatment. The secondary outcomes included the quality of the fluoroscopic FO views, the threshold voltage to provoke paresthesia, the procedure time, the number of fluoroscopic images, and the facial numbness VAS. RESULTS: Compared with the classic approach group, the H-figure approach group was associated with better long-term pain relief after the procedure, with significantly fewer patients had pain 3 months (6.6% vs 17.0%, P = .012) and 12 months (21.3% vs 38.0%, P = .005) after the procedure, and among patients who had pain after the procedure, patients in the H-figure group had significantly less pain 6 months after the procedure (VAS median [interquartile range (IQR)]: 3 [2-6] vs 6 [4-7], P < .001). Moreover, compared to the classic approach, the H-figure approach provided better fluoroscopic view of FO, lower threshold voltage to elicit paresthesia (median [IQR]: 0.2 [0.2-0.3] vs 0.4 [0.4-0.5] V, P < .0001), with shorter procedure time (median [IQR]: 7.5 [6.0-9.0] vs 14.0 [10.0-18.0] min, P < .0001), and required fewer fluoroscopic images (median [IQR]: 4.0 [3.0-5.0] vs 8.0 [6.0-10.0], P < .0001). CONCLUSIONS: RFT of the trigeminal ganglion using the H-figure approach is associated with superior longer term clinical pain relief than the classic approach in treating ITN.


Assuntos
Forame Oval , Neuralgia do Trigêmeo , Dor Facial , Fluoroscopia , Humanos , Parestesia , Estudos Retrospectivos , Resultado do Tratamento , Neuralgia do Trigêmeo/diagnóstico por imagem , Neuralgia do Trigêmeo/terapia
17.
Sheng Li Xue Bao ; 74(1): 4-14, 2022 Feb 25.
Artigo em Zh | MEDLINE | ID: mdl-35199121

RESUMO

Acute kidney injury (AKI) refers to a clinical syndrome in which renal function declines rapidly in a short period of time caused by various pathological factors. During the development of AKI, renal tubules with the functions of reabsorption and excretion are prone to cell death due to external pathological stimuli, which is an important cause of impaired renal function. In recent years, a variety of new cell death pathways have been gradually recognized. Researchers have now found that regulated cell death (RCD), such as necroptosis, pyroptosis and ferroptosis, are important regulatory mechanisms of AKI. This article will summarize the research advances of various types of RCD involved in the process of AKI, aiming to deepen the understanding of AKI and provide innovative thoughts for the clinical treatment of AKI.


Assuntos
Injúria Renal Aguda , Morte Celular Regulada , Injúria Renal Aguda/metabolismo , Morte Celular , Humanos , Rim/metabolismo , Necroptose , Necrose/metabolismo , Necrose/patologia
18.
J Pharmacol Exp Ther ; 376(3): 330-337, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33293377

RESUMO

Chronic pain is a public health problem because current treatments are unsatisfactory with small therapeutic index. Although pregabalin is effective for treating chronic pain, the clinical use is limited because of its side effects. Therefore, improving its therapeutic index is essential. In this study, HSK16149 was found to be a novel ligand of voltage-gated calcium channel (VGCC) α 2 δ subunit. HSK16149 inhibited [3H]gabapentin binding to the α 2 δ subunit and was 23 times more potent than pregabalin. In two rat models of neuropathic pain, the minimum effective dose (MED) of HSK16149 was 10 mg/kg, and the efficacy was similar to that of 30 mg/kg pregabalin. Moreover, the efficacy of HSK16149 could persist up to 24 hours postadministration at 30 mg/kg, whereas the efficacy of pregabalin lasted only for 12 hours at 30 mg/kg in streptozotocin-induced diabetic neuropathy model, indicating that HSK16149 might be a longer-acting drug candidate. HSK16149 could also inhibit mechanical allodynia in intermittent cold stress model and decrease phase II pain behaviors in formalin-induced nociception model. In addition, the locomotor activity test showed that the MED of HSK16149 was similar to that of pregabalin, whereas in the Rotarod test, the MEDs of HSK16149 and pregabalin were 100 and 30 mg/kg, respectively. These findings indicated that HSK16149 might have a better safety profile on the central nervous system. In summary, HSK16149 is a potent ligand of VGCC α 2 δ subunit with a better therapeutic index than pregabalin. Hence, it could be an effective and safe drug candidate for treating chronic pain. SIGNIFICANCE STATEMENT: As a novel potent ligand of voltage-gated calcium channel α 2 δ subunit, HSK16149 has the potential to be an effective and safe drug candidate for the treatment of chronic pain.


Assuntos
Analgésicos/farmacologia , Canais de Cálcio/metabolismo , Dor Crônica/tratamento farmacológico , Analgésicos/metabolismo , Analgésicos/uso terapêutico , Animais , Dor Crônica/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Modelos Animais de Doenças , Fibromialgia/tratamento farmacológico , Ligantes , Masculino , Camundongos , Ratos
19.
Reproduction ; 162(3): 193-207, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34224392

RESUMO

PIWI proteins play important roles in germline development in the mammals. However, the functions of PIWIs in crustaceans remain unknown. In the present study, we identified three Piwis from the testis of Eriocheir sinensis (E. sinensis). Three Piwi genes encoded proteins with typical features of PIWI subfamilies and were highly expressed in the testis. Three PIWIs could be detected in the cytoplasm of spermatocytes and spermatids, while in spermatozoa, we could only detect PIWI1 and PIWI3 in the nucleus. The knockdown of PIWIs by dsRNA significantly affected the formation of the nuclei in spermatozoa, which resulted in deviant and irregular nuclei. PIWI defects significantly inhibited the apoptosis of abnormal germ cells through the caspase-dependent apoptosis pathway and p53 pathway. Knockdown of PIWIs inhibited the expression of caspase (Casp) 3, 7, 8, and p53 without affecting Bcl2 (B-cell lymphoma gene 2), Bax (B-cell lymphoma-2-associated X), and BaxI (B-cell lymphoma-2-associated X inhibitor), which further significantly increased abnormal spermatozoa in the knockdown-group crabs. These results show a new role of PIWI proteins in crustaceans that is different from that in mammals. In summary, PIWIs play roles in the formation of the germline nucleus and can maintain apoptosis in abnormal germ cells to remove abnormal germ cells in E. sinensis.


Assuntos
Braquiúros , Testículo , Animais , Apoptose , Braquiúros/genética , Células Germinativas/metabolismo , Masculino , Espermátides , Espermatócitos/metabolismo , Testículo/metabolismo
20.
Acta Pharmacol Sin ; 42(3): 436-450, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32647339

RESUMO

Acute renal injury (AKI) causes a long-term risk for progressing into chronic kidney disease (CKD) and interstitial fibrosis. Yes-associated protein (YAP), a key transcriptional cofactor in Hippo signaling pathway, shuttles between the cytoplasm and nucleus, which is required for the renal tubular epithelial cells repair in the acute phase of AKI. In this study we investigated the role of YAP during ischemia-reperfusion (IR)-induced AKI to CKD. Mice were subjected to left kidney IR followed by removal of the right kidney on the day before tissue harvests. Mouse shRNA expression adenovirus (Ad-shYAP or Ad-shKLF4) and mouse KLF4 expression adenovirus (Ad-KLF4) were delivered to mice by intrarenal injection on D7 after IR. We showed that the expression and nucleus distribution of YAP were persistently increased until the end of experiment (D21 after IR). The sustained activation of YAP in post-acute phase of AKI was accompanied by renal dysfunction and interstitial fibrosis. Knockdown of YAP significantly attenuated IR-induced renal dysfunction and decreased the expression of fibrogenic factors TGF-ß and CTGF in the kidney. We showed that the expression of the transcription factor KLF4, lined on the upstream of YAP, was also persistently increased. Knockdown on KLF4 attenuated YAP increase and nuclear translocation as well as renal functional deterioration and interstitial fibrosis in IR mice, whereas KLF4 overexpression caused opposite effects. KLF4 increased the expression of ITCH, and ITCH facilitated YAP nuclear translocation via degrading LATS1. Furthermore, we demonstrated in primary cultured renal tubular cells that KLF4 bound to the promoter region of YAP and positively regulates YAP expression. In biopsy sample from CKD patients, we also observed increased expression and nuclear distribution of YAP. In conclusion, the activation of YAP in the post-acute phase of AKI is implicated in renal functional deterioration and fibrosis although it exhibits beneficial effect in acute phase. Reprogramming factor KLF4 is responsible for the persistent activation of YAP. Blocking the activation of KLF4-YAP pathway might be a way to prevent the transition of AKI into CKD.


Assuntos
Injúria Renal Aguda/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fibrose/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/etiologia , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Fibrose/etiologia , Fator 4 Semelhante a Kruppel , Masculino , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Traumatismo por Reperfusão/complicações , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima/fisiologia , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA