Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(21): 216903, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856288

RESUMO

Controlling interlayer excitons in Van der Waals heterostructures holds promise for exploring Bose-Einstein condensates and developing novel optoelectronic applications, such as excitonic integrated circuits. Despite intensive studies, several key fundamental properties of interlayer excitons, such as their binding energies and interactions with charges, remain not well understood. Here we report the formation of momentum-direct interlayer excitons in a high-quality MoSe_{2}/hBN/MoSe_{2} heterostructure under an electric field, characterized by bright photoluminescence (PL) emission with high quantum yield and a narrow linewidth of less than 4 meV. These interlayer excitons show electrically tunable emission energy spanning ∼180 meV through the Stark effect, and exhibit a sizable binding energy of ∼81 meV in the intrinsic regime, along with trion binding energies of a few millielectronvolts. Remarkably, we demonstrate the long-range transport of interlayer excitons with a characteristic diffusion length exceeding 10 µm, which can be attributed, in part, to their dipolar repulsive interactions. Spatially and polarization-resolved spectroscopic studies reveal rich exciton physics in the system, such as valley polarization, local trapping, and the possible existence of dark interlayer excitons. The formation and transport of tightly bound interlayer excitons with narrow linewidth, coupled with the ability to electrically manipulate their properties, open exciting new avenues for exploring quantum many-body physics, including excitonic condensate and superfluidity, and for developing novel optoelectronic devices, such as exciton and photon routers.

2.
J Am Chem Soc ; 143(45): 18941-18951, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34747168

RESUMO

Carbon quantum dots (CQDs) have developed into prospective nanomaterials for next-generation lighting and displays due to their intrinsic advantages of high stability, low cost, and environmental friendliness. However, confined by the spin-forbidden nature of triplet state transitions, the highest theoretical value of external quantum efficiency (EQE) of fluorescent CQDs is merely 5%, which fundamentally limits their further application in electroluminescent light-emitting diodes (LEDs). Soluble phosphorescent CQDs offer a means of breaking the shackle to achieve efficient monochromatic electroluminescence, especially red emission, which is a pivotal constituent in full-color displays. Here, the synthesis of red (625 nm) phosphorescent carbon quantum dot organic frameworks (CDOFs) with a quantum yield of up to 42.3% and realization of high-efficiency red phosphorescent electroluminescent LEDs are reported. The LEDs based on the CDOFs exhibited a red emission with a maximum luminance of 1818 cd m-2 and an EQE of 5.6%. This work explores the possibility of a new perspective for developing high-performance CQD-based electroluminescent LEDs.

3.
Nat Commun ; 15(1): 2305, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485728

RESUMO

Understanding the Hubbard model is crucial for investigating various quantum many-body states and its fermionic and bosonic versions have been largely realized separately. Recently, transition metal dichalcogenides heterobilayers have emerged as a promising platform for simulating the rich physics of the Hubbard model. In this work, we explore the interplay between fermionic and bosonic populations, using a WS2/WSe2 heterobilayer device that hosts this hybrid particle density. We independently tune the fermionic and bosonic populations by electronic doping and optical injection of electron-hole pairs, respectively. This enables us to form strongly interacting excitons that are manifested in a large energy gap in the photoluminescence spectrum. The incompressibility of excitons is further corroborated by observing a suppression of exciton diffusion with increasing pump intensity, as opposed to the expected behavior of a weakly interacting gas of bosons, suggesting the formation of a bosonic Mott insulator. We explain our observations using a two-band model including phase space filling. Our system provides a controllable approach to the exploration of quantum many-body effects in the generalized Bose-Fermi-Hubbard model.

4.
J Phys Chem Lett ; 13(26): 6130-6137, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35759533

RESUMO

We illustrate the critical importance of the energetics of cation-solvent versus cation-iodoplumbate interactions in determining the stability of ABX3 perovskite precursors in a dimethylformamide (DMF) solvent medium. We have shown, through a complementary suite of nuclear magnetic resonance (NMR) and computational studies, that Cs+ exhibits significantly different solvent vs iodoplumbate interactions compared to organic A+-site cations such as CH3NH3+ (MA+). Two NMR studies were conducted: 133Cs NMR analysis shows that Cs+ and MA+ compete for coordination with PbI3- in DMF. 207Pb NMR studies of PbI2 with cationic iodides show that perovskite-forming Cs+ (and, somewhat, Rb+) do not comport with the 207Pb chemical shift trend found for Li+, Na+, and K+. Three independent computational approaches (density functional theory (DFT), ab initio Molecular Dynamics (AIMD), and a polarizable force field within Molecular Dynamics) yielded strikingly similar results: Cs+ interacts more strongly with the PbI3- iodoplumbate than does MA+ in a polar solvent environment like DMF. The stronger energy preference for PbI3- coordination of Cs+ vs MA+ in DMF demonstrates that Cs+ is not simply a postcrystallization cation "fit" for the perovskite A+-site. Instead, it may facilitate preorganization of the framework precursor that eventually transforms into the crystalline perovskite structure.


Assuntos
Tinta , Chumbo , Compostos de Cálcio , Cátions , Césio/química , Cristalização , Óxidos , Solventes , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA