Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 179(3): 644-658.e13, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31607511

RESUMO

Rotavirus (RV) encounters intestinal epithelial cells amidst diverse microbiota, opening possibilities of microbes influencing RV infection. Although RV clearance typically requires adaptive immunity, we unintentionally generated RV-resistant immunodeficient mice, which, we hypothesized, reflected select microbes protecting against RV. Accordingly, such RV resistance was transferred by co-housing and fecal transplant. RV-protecting microbiota were interrogated by heat, filtration, and antimicrobial agents, followed by limiting dilution transplant to germ-free mice and microbiome analysis. This approach revealed that segmented filamentous bacteria (SFB) were sufficient to protect mice against RV infection and associated diarrhea. Such protection was independent of previously defined RV-impeding factors, including interferon, IL-17, and IL-22. Colonization of the ileum by SFB induced changes in host gene expression and accelerated epithelial cell turnover. Incubation of RV with SFB-containing feces reduced infectivity in vitro, suggesting direct neutralization of RV. Thus, independent of immune cells, SFB confer protection against certain enteric viral infections and associated diarrheal disease.


Assuntos
Imunidade Adaptativa/genética , Diarreia/microbiologia , Mucosa Intestinal/microbiologia , Infecções por Rotavirus/microbiologia , Animais , Anti-Infecciosos/farmacologia , Bactérias/genética , Bactérias/metabolismo , Diarreia/prevenção & controle , Diarreia/virologia , Fezes/microbiologia , Regulação da Expressão Gênica/genética , Humanos , Íleo/microbiologia , Íleo/patologia , Íleo/virologia , Interferons/genética , Interleucina-17/genética , Interleucinas/genética , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Camundongos , Microbiota/genética , Rotavirus/patogenicidade , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia , Interleucina 22
2.
Immunity ; 56(8): 1862-1875.e9, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37478853

RESUMO

Loss of oral tolerance (LOT) to gluten, driven by dendritic cell (DC) priming of gluten-specific T helper 1 (Th1) cell immune responses, is a hallmark of celiac disease (CeD) and can be triggered by enteric viral infections. Whether certain commensals can moderate virus-mediated LOT remains elusive. Here, using a mouse model of virus-mediated LOT, we discovered that the gut-colonizing protist Tritrichomonas (T.) arnold promotes oral tolerance and protects against reovirus- and murine norovirus-mediated LOT, independent of the microbiota. Protection was not attributable to antiviral host responses or T. arnold-mediated innate type 2 immunity. Mechanistically, T. arnold directly restrained the proinflammatory program in dietary antigen-presenting DCs, subsequently limiting Th1 and promoting regulatory T cell responses. Finally, analysis of fecal microbiomes showed that T. arnold-related Parabasalid strains are underrepresented in human CeD patients. Altogether, these findings will motivate further exploration of oral-tolerance-promoting protists in CeD and other immune-mediated food sensitivities.


Assuntos
Antígenos , Imunidade Inata , Animais , Camundongos , Humanos , Dieta , Glutens , Células Dendríticas , Tolerância Imunológica
3.
Immunity ; 46(5): 768-770, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514682

RESUMO

Type III interferon (IFNλ) and type I IFN (IFNα/ß) have overlapping antiviral activities in the lung. In this issue of Immunity, Galani et al. (2017) identify a critical early role for IFNλ, not shared by IFNα/ß, in protection of the lung following influenza virus infection.


Assuntos
Antivirais , Interferon-alfa , Humanos , Orthomyxoviridae , Infecções por Orthomyxoviridae/imunologia
4.
Immunity ; 47(4): 723-738.e5, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29031786

RESUMO

Noroviruses can establish chronic infections with active viral shedding in healthy humans but whether persistence is associated with adaptive immune dysfunction is unknown. We used genetically engineered strains of mouse norovirus (MNV) to investigate CD8+ T cell differentiation during chronic infection. We found that chronic infection drove MNV-specific tissue-resident memory (Trm) CD8+ T cells to a differentiation state resembling inflationary effector responses against latent cytomegalovirus with only limited evidence of exhaustion. These MNV-specific Trm cells remained highly functional yet appeared ignorant of ongoing viral replication. Pre-existing MNV-specific Trm cells provided partial protection against chronic infection but largely ceased to detect virus within 72 hours of challenge, demonstrating rapid sequestration of viral replication away from T cells. Our studies revealed a strategy of immune evasion by MNV via the induction of a CD8+ T cell program normally reserved for latent pathogens and persistence in an immune-privileged enteric niche.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Caliciviridae/imunologia , Diferenciação Celular/imunologia , Gastroenterite/imunologia , Norovirus/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/virologia , Diferenciação Celular/genética , Linhagem Celular , Microambiente Celular/genética , Microambiente Celular/imunologia , Gastroenterite/genética , Gastroenterite/virologia , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Memória Imunológica/genética , Memória Imunológica/imunologia , Camundongos Endogâmicos C57BL , Norovirus/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos
5.
Immunity ; 43(1): 15-28, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26200010

RESUMO

When type III interferon (IFN-λ; also known as interleukin-28 [IL-28] and IL-29) was discovered in 2003, its antiviral function was expected to be analogous to that of type I IFNs (IFN-α and IFN-ß) via the induction of IFN-stimulated genes (ISGs). Although IFN-λ stimulates expression of antiviral ISGs preferentially in cells of epithelial origin, recent studies have defined additional antiviral mechanisms in other cell types and tissues. Viral infection models using mice lacking IFN-λ signaling and SNP associations with human disease have expanded our understanding of the contribution of IFN-λ to the antiviral response at anatomic barriers and the immune response beyond these barriers. In this review, we highlight recent insights into IFN-λ functions, including its ability to restrict virus spread into the brain and to clear chronic viral infections in the gastrointestinal tract. We also discuss how IFN-λ modulates innate and adaptive immunity, autoimmunity, and tumor progression and its possible therapeutic applications in human disease.


Assuntos
Encéfalo/imunologia , Trato Gastrointestinal/imunologia , Interferon gama/imunologia , Neoplasias/imunologia , Viroses/imunologia , Imunidade Adaptativa/imunologia , Animais , Antivirais/imunologia , Autoimunidade/imunologia , Encéfalo/virologia , Trato Gastrointestinal/virologia , Humanos , Imunidade Inata/imunologia , Camundongos , Transdução de Sinais/imunologia
6.
PLoS Pathog ; 17(3): e1009402, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33705489

RESUMO

Interferons (IFNs) are key controllers of viral replication, with intact IFN responses suppressing virus growth and spread. Using the murine norovirus (MNoV) system, we show that IFNs exert selective pressure to limit the pathogenic evolutionary potential of this enteric virus. In animals lacking type I IFN signaling, the nonlethal MNoV strain CR6 rapidly acquired enhanced virulence via conversion of a single nucleotide. This nucleotide change resulted in amino acid substitution F514I in the viral capsid, which led to >10,000-fold higher replication in systemic organs including the brain. Pathogenicity was mediated by enhanced recruitment and infection of intestinal myeloid cells and increased extraintestinal dissemination of virus. Interestingly, the trade-off for this mutation was reduced fitness in an IFN-competent host, in which CR6 bearing F514I exhibited decreased intestinal replication and shedding. In an immunodeficient context, a spontaneous amino acid change can thus convert a relatively avirulent viral strain into a lethal pathogen.


Assuntos
Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/genética , Norovirus/genética , Norovirus/patogenicidade , Virulência/genética , Animais , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/imunologia , Aptidão Genética/genética , Imunidade Inata/imunologia , Camundongos , Norovirus/imunologia , Polimorfismo de Nucleotídeo Único , Virulência/imunologia , Replicação Viral
7.
Infect Immun ; 90(7): e0066321, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35678562

RESUMO

Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that causes diseases ranging from gastroenteritis to systemic infection and sepsis. Salmonella uses type III secretion systems (T3SS) to inject effectors into host cells. While these effectors are necessary for bacterial invasion and intracellular survival, intracellular delivery of T3SS products also enables detection of translocated Salmonella ligands by cytosolic immune sensors. Some of these sensors form multimeric complexes called inflammasomes, which activate caspases that lead to interleukin-1 (IL-1) family cytokine release and pyroptosis. In particular, the Salmonella T3SS needle, inner rod, and flagellin proteins activate the NAIP/NLRC4 inflammasome in murine intestinal epithelial cells (IECs), which leads to restriction of bacterial replication and extrusion of infected IECs into the intestinal lumen, thereby preventing systemic dissemination of Salmonella. While these processes are quite well studied in mice, the role of the NAIP/NLRC4 inflammasome in human IECs remains unknown. Unexpectedly, we found the NAIP/NLRC4 inflammasome is dispensable for early inflammasome responses to Salmonella in both human IEC lines and enteroids. Additionally, NLRP3 and the adaptor protein ASC are not required for inflammasome activation in Caco-2 cells. Instead, we observed a necessity for caspase-4 and gasdermin D pore-forming activity in mediating inflammasome responses to Salmonella in Caco-2 cells. These findings suggest that unlike murine IECs, human IECs do not rely on NAIP/NLRC4 or NLRP3/ASC inflammasomes and instead primarily use caspase-4 to mediate inflammasome responses to Salmonella pathogenicity island 1 (SPI-1)-expressing Salmonella.


Assuntos
Inflamassomos , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Células CACO-2 , Proteínas de Ligação ao Cálcio , Caspases Iniciadoras , Células Epiteliais/metabolismo , Humanos , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Inibidora de Apoptose Neuronal , Salmonella typhimurium , Sorogrupo
8.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177207

RESUMO

Noroviruses are a leading cause of gastrointestinal infection in humans and mice. Understanding human norovirus (HuNoV) cell tropism has important implications for our understanding of viral pathogenesis. Murine norovirus (MNoV) is extensively used as a surrogate model for HuNoV. We previously identified CD300lf as the receptor for MNoV. Here, we generated a Cd300lf conditional knockout (CD300lfF/F ) mouse to elucidate the cell tropism of persistent and nonpersistent strains of murine norovirus. Using this mouse model, we demonstrated that CD300lf expression on intestinal epithelial cells (IECs), and on tuft cells in particular, is essential for transmission of the persistent MNoV strain CR6 (MNoVCR6) in vivo In contrast, the nonpersistent MNoV strain CW3 (MNoVCW3) does not require CD300lf expression on IECs for infection. However, deletion of CD300lf in myelomonocytic cells (LysM Cre+) partially reduces CW3 viral load in lymphoid and intestinal tissues. Disruption of CD300lf expression on B cells (CD19 Cre), neutrophils (Mrp8 Cre), and dendritic cells (CD11c Cre) did not affect MNoVCW3 viral RNA levels. Finally, we show that the transcription factor STAT1, which is critical for the innate immune response, partially restricts the cell tropism of MNoVCW3 to LysM+ cells. Taken together, these data demonstrate that CD300lf expression on tuft cells is essential for MNoVCR6; that myelomonocytic cells are a major, but not exclusive, target cell of MNoVCW3; and that STAT1 signaling restricts the cellular tropism of MNoVCW3 This study provides the first genetic system for studying the cell type-specific role of CD300lf in norovirus pathogenesis.IMPORTANCE Human noroviruses (HuNoVs) are a leading cause of gastroenteritis resulting in up to 200,000 deaths each year. The receptor and cell tropism of HuNoV in immunocompetent humans are unclear. We use murine norovirus (MNoV) as a model for HuNoV. We recently identified CD300lf as the sole physiologic receptor for MNoV. Here, we leverage this finding to generate a Cd300lf conditional knockout mouse to decipher the contributions of specific cell types to MNoV infection. We demonstrate that persistent MNoVCR6 requires CD300lf expression on tuft cells. In contrast, multiple CD300lf+ cell types, dominated by myelomonocytic cells, are sufficient for nonpersistent MNoVCW3 infection. CD300lf expression on epithelial cells, B cells, neutrophils, and dendritic cells is not critical for MNoVCW3 infection. Mortality associated with the MNoVCW3 strain in Stat1-/- mice does not require CD300lf expression on LysM+ cells, highlighting that both CD300lf receptor expression and innate immunity regulate MNoV cell tropism in vivo.


Assuntos
Células Epiteliais/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata/imunologia , Intestinos/imunologia , Norovirus/fisiologia , Receptores Imunológicos/fisiologia , Tropismo Viral , Animais , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/virologia , Células Epiteliais/virologia , Feminino , Intestinos/virologia , Masculino , Camundongos , Camundongos Knockout
9.
Microbiology (Reading) ; 167(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34698627

RESUMO

Bacterial small RNAs (sRNAs) are important regulators of gene expression; however, the impact of natural mutations on sRNA functions has not been studied extensively. Here we show that the sRNA MgrR contains a unique 53 bp insertion in Escherichia fergusonii, a close relative of Escherichia coli and Salmonella enterica. The insertion is a repetitive extragenic palindromic (REP) sequence that could block transcription, but full-length MgrR is produced in E. fergusonii, showing that the insertion has not affected sRNA production. Additionally, despite containing the large insertion, the sRNA appears to be functional because deletion of mgrR made E. fergusonii more susceptible to H2O2. The molecular details of MgrR's roles in H2O2defence are yet to be defined, but our results suggest that having an alternative function allowed the sRNA to be retained in E. fergusonii despite it sustaining a large, potentially disruptive mutation.


Assuntos
Escherichia/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Escherichia/classificação , Escherichia/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Magnésio/metabolismo , Mutação , Filogenia , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo
10.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32847859

RESUMO

Interferon (IFN) family cytokines stimulate genes (interferon-stimulated genes [ISGs]) that are integral to antiviral host defense. Type I IFNs act systemically, whereas type III IFNs act preferentially at epithelial barriers. Among barrier cells, intestinal epithelial cells (IECs) are particularly dependent on type III IFN for the control and clearance of virus infection, but the physiological basis of this selective IFN response is not well understood. Here, we confirm that type III IFN treatment elicits robust and uniform ISG expression in neonatal mouse IECs and inhibits the replication of IEC-tropic rotavirus. In contrast, type I IFN elicits a marginal ISG response in neonatal mouse IECs and does not inhibit rotavirus replication. In vitro treatment of IEC organoids with type III IFN results in ISG expression that mirrors the in vivo type III IFN response. However, IEC organoids have increased expression of the type I IFN receptor relative to neonate IECs, and the response of IEC organoids to type I IFN is strikingly increased in magnitude and scope relative to type III IFN. The expanded type I IFN-specific response includes proapoptotic genes and potentiates toxicity triggered by tumor necrosis factor alpha (TNF-α). The ISGs stimulated in common by type I and III IFNs have strong interferon-stimulated response element (ISRE) promoter motifs, whereas the expanded set of type I IFN-specific ISGs, including proapoptotic genes, have weak ISRE motifs. Thus, the preferential responsiveness of IECs to type III IFN in vivo enables selective ISG expression during infection that confers antiviral protection but minimizes disruption of intestinal homeostasis.IMPORTANCE Enteric viral infections are a major cause of gastroenteritis worldwide and have the potential to trigger or exacerbate intestinal inflammatory diseases. Prior studies have identified specialized innate immune responses that are active in the intestinal epithelium following viral infection, but our understanding of the benefits of such an epithelium-specific response is incomplete. Here, we show that the intestinal epithelial antiviral response is programmed to enable protection while minimizing epithelial cytotoxicity that can often accompany an inflammatory response. Our findings offer new insight into the benefits of a tailored innate immune response at the intestinal barrier and suggest how dysregulation of this response could promote inflammatory disease.


Assuntos
Citocinas/imunologia , Mucosa Intestinal/imunologia , Infecções por Rotavirus/imunologia , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT2/imunologia , Fator de Necrose Tumoral alfa/toxicidade , Animais , Animais Recém-Nascidos , Citocinas/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/imunologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides/efeitos dos fármacos , Organoides/imunologia , Organoides/virologia , Elementos de Resposta , Rotavirus/efeitos dos fármacos , Rotavirus/crescimento & desenvolvimento , Rotavirus/patogenicidade , Infecções por Rotavirus/genética , Infecções por Rotavirus/patologia , Infecções por Rotavirus/virologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT2/genética , Transdução de Sinais , Replicação Viral
11.
PLoS Pathog ; 15(7): e1007940, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31329638

RESUMO

Human norovirus (HNoV) is the leading cause of acute gastroenteritis and is spread by fecal shedding that can often persist for weeks to months after the resolution of symptoms. Elimination of persistent viral reservoirs has the potential to prevent outbreaks. Similar to HNoV, murine norovirus (MNV) is spread by persistent shedding in the feces and provides a tractable model to study molecular mechanisms of enteric persistence. Previous studies have identified non-structural protein 1 (NS1) from the persistent MNV strain CR6 as critical for persistent infection in intestinal epithelial cells (IECs), but its mechanism of action remains unclear. We now find that the function of CR6 NS1 is regulated by apoptotic caspase cleavage. Following induction of apoptosis in infected cells, caspases cleave the precursor NS1/2 protein, and this cleavage is prevented by mutation of caspase target motifs. These mutations profoundly compromise CR6 infection of IECs and persistence in the intestine. Conversely, NS1/2 cleavage is not strictly required for acute replication in extra-intestinal tissues or in cultured myeloid cells, suggesting an IEC-centric role. Intriguingly, we find that caspase cleavage of CR6 NS1/2 reciprocally promotes caspase activity, potentiates cell death, and amplifies spread among cultured IEC monolayers. Together, these data indicate that the function of CR6 NS1 is regulated by apoptotic caspases, and suggest that apoptotic cell death enables epithelial spread and persistent shedding.


Assuntos
Mucosa Intestinal/virologia , Norovirus/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Animais , Apoptose , Infecções por Caliciviridae/etiologia , Infecções por Caliciviridae/patologia , Infecções por Caliciviridae/virologia , Caspases/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Gastroenterite/etiologia , Gastroenterite/patologia , Gastroenterite/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Células Mieloides/metabolismo , Células Mieloides/patologia , Células Mieloides/virologia , Norovirus/genética , Norovirus/fisiologia , Proteínas não Estruturais Virais/genética , Replicação Viral , Eliminação de Partículas Virais
12.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30209176

RESUMO

The linear ubiquitin chain assembly complex (LUBAC), composed of heme-oxidized IRP2 ubiquitin ligase 1 (HOIL1), HOIL1-interacting protein (HOIP), and SHANK-associated RH domain-interacting protein (SHARPIN), is a crucial regulator of multiple immune signaling pathways. In humans, HOIL1 or HOIP deficiency is associated with an immune disorder involving autoinflammation, immunodeficiency, and inflammatory bowel disease (IBD)-like symptoms. During viral infection, LUBAC is reported to inhibit the induction of interferon (IFN) by the cytosolic RNA sensor retinoic acid-inducible gene I (RIG-I). Surprisingly, we found that HOIL1 is essential for the induction of both type I and type III IFNs, as well as the phosphorylation of IFN regulatory factor 3 (IRF3), during murine norovirus (MNoV) infection in cultured dendritic cells. The RIG-I-like receptor, melanoma differentiation-associated protein 5 (MDA5), is also required for IFN induction and IRF3 phosphorylation during MNoV infection. Furthermore, HOIL1 and MDA5 were required for IFN induction after Theiler's murine encephalomyelitis virus infection and poly(I·C) transfection, but not Sendai virus or vesicular stomatitis virus infection, indicating that HOIL1 and LUBAC are required selectively for MDA5 signaling. Moreover, Hoil1-/- mice exhibited defective control of acute and persistent murine norovirus infection and defective regulation of MNoV persistence by the microbiome as also observed previously for mice deficient in interferon lambda (IFN-λ) receptor, signal transducer and activator of transcription factor 1 (STAT1), and IRF3. These data indicate that LUBAC plays a critical role in IFN induction to control RNA viruses sensed by MDA5.IMPORTANCE Human noroviruses are a leading cause of gastroenteritis throughout the world but are challenging to study in vivo and in vitro Murine norovirus (MNoV) provides a tractable genetic and small-animal model to study norovirus biology and immune responses. Interferons are critical mediators of antiviral immunity, but excessive expression can dysregulate the immune system. IFN-λ plays an important role at mucosal surfaces, including the gastrointestinal tract, and both IFN-λ and commensal enteric bacteria are important modulators of persistent MNoV infection. LUBAC, of which HOIL1 is a component, is reported to inhibit type I IFN induction after RIG-I stimulation. We show, in contrast, that HOIL1 is critical for type I and III IFN induction during infection with MNoV, a virus that preferentially activates MDA5. Moreover, HOIL1 regulates MNoV infection in vivo These data reveal distinct functions for LUBAC in these closely related signaling pathways and in modulation of IFN expression.


Assuntos
Infecções por Caliciviridae/virologia , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferons/metabolismo , Norovirus/patogenicidade , Ubiquitina-Proteína Ligases/fisiologia , Animais , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/microbiologia , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Células Dendríticas/virologia , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Fibroblastos/virologia , Genoma Viral , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/genética , Helicase IFIH1 Induzida por Interferon/genética , Interferons/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , Norovirus/genética , Fosforilação , Interferon lambda
14.
J Virol ; 91(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077655

RESUMO

Lambda interferon (IFN-λ) has potent antiviral effects against multiple enteric viral pathogens, including norovirus and rotavirus, in both preventing and curing infection. Because the intestine includes a diverse array of cell types, however, the cell(s) upon which IFN-λ acts to exert its antiviral effects is unclear. Here, we sought to identify IFN-λ-responsive cells by generation of mice with lineage-specific deletion of the receptor for IFN-λ, Ifnlr1 We found that expression of IFNLR1 on intestinal epithelial cells (IECs) in the small intestine and colon is required for enteric IFN-λ antiviral activity. IEC Ifnlr1 expression also determines the efficacy of IFN-λ in resolving persistent murine norovirus (MNoV) infection and regulates fecal shedding and viral titers in tissue. Thus, the expression of Ifnlr1 by IECs is necessary for the response to both endogenous and exogenous IFN-λ. We further demonstrate that IEC Ifnlr1 expression is required for the sterilizing innate immune effects of IFN-λ by extending these findings in Rag1-deficient mice. Finally, we assessed whether our findings pertained to multiple viral pathogens by infecting mice specifically lacking IEC Ifnlr1 expression with reovirus. These mice phenocopied Ifnlr1-null animals, exhibiting increased intestinal tissue titers and enhanced reovirus fecal shedding. Thus, IECs are the critical cell type responding to IFN-λ to control multiple enteric viruses. This is the first genetic evidence that supports an essential role for IECs in IFN-λ-mediated control of enteric viral infection, and these findings provide insight into the mechanism of IFN-λ-mediated antiviral activity.IMPORTANCE Human noroviruses (HNoVs) are the leading cause of epidemic gastroenteritis worldwide. Type III interferons (IFN-λ) control enteric viral infections in the gut and have been shown to cure mouse norovirus, a small-animal model for HNoVs. Using a genetic approach with conditional knockout mice, we identified IECs as the dominant IFN-λ-responsive cells in control of enteric virus infection in vivo Upon murine norovirus or reovirus infection, Ifnlr1 depletion in IECs largely recapitulated the phenotype seen in Ifnlr1-/- mice of higher intestinal tissue viral titers and increased viral shedding in the stool. Moreover, IFN-λ-mediated sterilizing immunity against murine norovirus requires the capacity of IECs to respond to IFN-λ. These findings clarify the mechanism of action of this cytokine and emphasize the therapeutic potential of IFN-λ for treating mucosal viral infections.


Assuntos
Células Epiteliais/metabolismo , Norovirus/fisiologia , Orthoreovirus de Mamíferos/fisiologia , Receptores de Interferon/metabolismo , Animais , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/virologia , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/virologia , Imunidade Inata , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestino Grosso/imunologia , Intestino Grosso/metabolismo , Intestino Grosso/virologia , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Intestino Delgado/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Eliminação de Partículas Virais
15.
PLoS Pathog ; 12(6): e1005684, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27327515

RESUMO

In order for a virus to persist, there must be a balance between viral replication and immune clearance. It is commonly believed that adaptive immunity drives clearance of viral infections and, thus, dysfunction or viral evasion of adaptive immunity is required for a virus to persist. Type I interferons (IFNs) play pleiotropic roles in the antiviral response, including through innate control of viral replication. Murine norovirus (MNoV) replicates in dendritic cells (DCs) and type I IFN signaling in DCs is important for early control of MNoV replication. We show here that the non-persistent MNoV strain CW3 persists systemically when CD11c positive DCs are unable to respond to type I IFN. Persistence in this setting is associated with increased early viral titers, maintenance of DC numbers, increased expression of DC activation markers and an increase in CD8 T cell and antibody responses. Furthermore, CD8 T cell function is maintained during the persistent phase of infection and adaptive immune cells from persistently infected mice are functional when transferred to Rag1-/- recipients. Finally, increased early replication and persistence are also observed in mixed bone marrow chimeras where only half of the CD11c positive DCs are unable to respond to type I IFN. These findings demonstrate that increased early viral replication due to a cell-intrinsic innate immune deficiency is sufficient for persistence and a functional adaptive immune response is not sufficient for viral clearance.


Assuntos
Infecções por Caliciviridae/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Interferon Tipo I/imunologia , Receptor de Interferon alfa e beta/imunologia , Imunidade Adaptativa/imunologia , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Norovirus , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Interferon alfa e beta/deficiência , Replicação Viral/fisiologia
16.
Proteins ; 82(7): 1200-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24273131

RESUMO

Compact viral genomes such as those found in noroviruses, which cause significant enteric disease in humans, often encode only a few proteins, but affect a wide range of processes in their hosts and ensure efficient propagation of the virus. Both human and mouse noroviruses (MNVs) persistently replicate and are shed in stool, a highly effective strategy for spreading between hosts. For MNV, the presence of a glutamate rather than an aspartate at position 94 of the NS1/2 protein was previously shown to be essential for persistent replication and shedding. Here, we analyze these critical sequences of NS1/2 at the structural level. Using solution nuclear magnetic resonance methods, we determined folded NS1/2 domain structures from a nonpersistent murine norovirus strain CW3, a persistent strain CR6, and a persistent mutant strain CW3(D94E). We found an unstructured PEST-like domain followed by a novel folded domain in the N-terminus of NS1/2. All three forms of the domain are stable and monomeric in solution. Residue 94, critical for determining persistence, is located in a reverse turn following an α-helix in the folded domain. The longer side chain of glutamate, but not aspartate, allows interaction with the indole group of the nearby tryptophan, reshaping the surface of the domain. The discrimination between glutamyl and aspartyl residue is imposed by the stable tertiary conformation. These structural requirements correlate with the in vivo function of NS1/2 in persistence, a key element of norovirus biology and infection.


Assuntos
Aminoácidos , Mutação/genética , Norovirus , Proteínas não Estruturais Virais , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Modelos Moleculares , Dados de Sequência Molecular , Norovirus/química , Norovirus/genética , Conformação Proteica , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
17.
J Virol ; 87(1): 327-34, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23077309

RESUMO

Human norovirus (HuNoV) is the major cause of acute nonbacterial gastroenteritis worldwide but has no clear animal reservoir. HuNoV can persist after the resolution of symptoms, and this persistence may be essential for viral maintenance within the population. Many strains of the related murine norovirus (MNV) also persist, providing a tractable animal model for studying norovirus (NoV) persistence. We have used recombinant cDNA clones of representative persistent (CR6) and nonpersistent (CW3) strains to identify a domain within the nonstructural gene NS1/2 that is necessary and sufficient for persistence. Furthermore, we found that a single change of aspartic acid to glutamic acid in CW3 NS1/2 was sufficient for persistence. This same conservative change also caused increased growth of CW3 in the proximal colon, which we found to be a major tissue reservoir of MNV persistence, suggesting that NS1/2 determines viral tropism that is necessary for persistence. These findings represent the first identified function for NoV NS1/2 during infection and establish a novel model system for the study of enteric viral persistence.


Assuntos
Infecções por Caliciviridae/virologia , Portador Sadio/virologia , Colo/virologia , Norovirus/genética , Norovirus/fisiologia , Proteínas não Estruturais Virais/genética , Tropismo Viral , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Mutação Puntual , Proteínas não Estruturais Virais/metabolismo
18.
Curr Opin Immunol ; 86: 102412, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38518661

RESUMO

Interferon (IFN) was discovered based on interference with virus production, and three types of IFN are now defined. Since its discovery, IFN's roles have expanded beyond viruses to diverse pathogen types, tissue homeostasis, and inflammatory disease. The gastrointestinal (GI) tract is arguably the tissue where the roles of IFN types are most distinct, with a particularly prominent role for type-III IFN in antiviral protection of the intestinal epithelium. Current studies continue to deepen our understanding of the type- and tissue-specific roles of IFN. This review highlights these advances within the GI tract, including discovery of protective roles for type-III IFNs against nonviral GI pathogens, and discovery of an antiviral homeostatic type-III IFN response within the intestinal epithelium.


Assuntos
Interferon Tipo I , Vírus , Humanos , Interferon lambda , Interferons , Trato Gastrointestinal , Antivirais
19.
Mucosal Immunol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604478

RESUMO

Intestinal epithelial cell (IEC) responses to interferon (IFN) favor antiviral defense with minimal cytotoxicity, but IEC-specific factors that regulate these responses remain poorly understood. Interferon regulatory factors (IRFs) are a family of nine related transcription factors, and IRF6 is preferentially expressed by epithelial cells, but its roles in IEC immunity are unknown. In this study, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) screens found that Irf6 deficiency enhanced IFN-stimulated antiviral responses in transformed mouse IECs but not macrophages. Furthermore, knockout (KO) of Irf6 in IEC organoids resulted in profound changes to homeostasis and immunity gene expression. Irf6 KO organoids grew more slowly, and single-cell ribonucleic acid sequencing indicated reduced expression of genes in epithelial differentiation and immunity pathways. IFN-stimulated gene expression was also significantly different in Irf6 KO organoids, with increased expression of stress and apoptosis-associated genes. Functionally, the transcriptional changes in Irf6 KO organoids were associated with increased cytotoxicity upon IFN treatment or inflammasome activation. These data indicate a previously unappreciated role for IRF6 in IEC biology, including regulation of epithelial development and moderation of innate immune responses to minimize cytotoxicity and maintain barrier function.

20.
Cell Rep ; 42(5): 112407, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37083328

RESUMO

Poxvirus infections of the skin are a recent emerging public health concern, yet the mechanisms that mediate protective immunity against these viral infections remain largely unknown. Here, we show that T helper 1 (Th1) memory CD4+ T cells are necessary and sufficient to provide complete and broad protection against poxvirus skin infections, whereas memory CD8+ T cells are dispensable. Core 2 O-glycan-synthesizing Th1 effector memory CD4+ T cells rapidly infiltrate the poxvirus-infected skin microenvironment and produce interferon γ (IFNγ) in an antigen-dependent manner, causing global changes in gene expression to promote anti-viral immunity. Keratinocytes express IFN-stimulated genes, upregulate both major histocompatibility complex (MHC) class I and MHC class II antigen presentation in an IFNγ-dependent manner, and require IFNγ receptor (IFNγR) signaling and MHC class II expression for memory CD4+ T cells to protect the skin from poxvirus infection. Thus, Th1 effector memory CD4+ T cells exhibit potent anti-viral activity within the skin, and keratinocytes are the key targets of IFNγ necessary for preventing poxvirus infection of the epidermis.


Assuntos
Linfócitos T CD4-Positivos , Infecções por Poxviridae , Humanos , Linfócitos T CD8-Positivos , Pele/metabolismo , Antígenos de Histocompatibilidade Classe II , Antígenos de Histocompatibilidade Classe I , Interferon gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA