Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 8: 283, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28280491

RESUMO

The Clermont scheme has been used for subtyping of Escherichia coli since it was initially described in early 2000. Since then, researchers have used the scheme to type and sub-type commensal E. coli and pathogenic E. coli, such as extraintestinal pathogenic E. coli (ExPEC), and compare their phylogenetic assignment by pathogenicity, serogroup, distribution among ExPEC of different host species and complement of virulence and resistance traits. Here, we compare assignments of human and avian ExPEC and commensal E. coli using the old and revised Clermont schemes to determine if the new scheme provides a refined snapshot of isolate classification. 1,996 E. coli from human hosts and poultry, including 84 human neonatal meningitis E. coli isolates, 88 human vaginal E. coli, 696 human uropathogenic E. coli, 197 healthy human fecal E. coli, 452 avian pathogenic E. coli (APEC), 200 retail poultry E. coli, 80 crop and gizzard E. coli from healthy poultry at slaughter and 199 fecal E. coli from healthy birds at slaughter. All isolates were subject to phylogenetic analysis using the Clermont et al. (2000, 2013) schemes and compared to determine the effect of the new classification on strain designation. Most of the isolates' strain designation remained where they were originally assigned. Greatest designation change occurred in APEC where 53.8% of isolates were reclassified; while classification rates among human strains ranged from 8 to 14%. However, some significant changes were observed for UPEC associated strains with significant (P < 0.05) designation changes observed from A to C and D to E or F phylogenetic types; a similar designation change was noted among NMEC for D to F designation change. Among the APEC significant designation changes were observed from A to C and D to E and F. These studies suggest that the new scheme provides a tighter and more meaningful definition of some ExPEC; while the new typing scheme has a significant impact on APEC classification. A comparison of phylogenetic group assignment by content of virulence, resistance, replicon and pathogenicity island genes in APEC suggests that insertion of pathogenicity islands into the genome appears to correlate closely with revised phylogenetic assignment.

2.
Genome Announc ; 4(6)2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27811098

RESUMO

Avian-pathogenic Escherichia coli (APEC) is the causative agent of colibacillosis, a disease that affects all facets of poultry production worldwide, resulting in multimillion dollar losses annually. Here, we report the genome sequence of an APEC O18 sequence type 95 (ST95) strain associated with disease in a chicken.

3.
Genome Announc ; 4(6)2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27811114

RESUMO

Neonatal meningitis Escherichia coli (NMEC) is a common agent of neonatal bacterial meningitis, causing high neonatal mortality and neurologic sequelae in its victims. Here, we present the complete genome sequence of NMEC O18 (also known as NMEC 58), a highly virulent (O18ac:K1, ST416) strain.

4.
PLoS One ; 11(1): e0147757, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26800268

RESUMO

Neonatal Meningitis Escherichia coli (NMEC) is one of the most common causes of neonatal bacterial meningitis in the US and elsewhere resulting in mortality or neurologic deficits in survivors. Large plasmids have been shown experimentally to increase the virulence of NMEC in the rat model of neonatal meningitis. Here, 9 ExPEC-like plasmids were isolated from NMEC and sequenced to identify the core and accessory plasmid genes of ExPEC-like virulence plasmids in NMEC and create an expanded plasmid phylogeny. Results showed sequenced virulence plasmids carry a strongly conserved core of genes with predicted functions in five distinct categories including: virulence, metabolism, plasmid stability, mobile elements, and unknown genes. The major functions of virulence-associated and plasmid core genes serve to increase in vivo fitness by adding multiple iron uptake systems to the genetic repertoire to facilitate NMEC's survival in the host's low iron environment, and systems to enhance bacterial resistance to host innate immunity. Phylogenetic analysis based on these core plasmid genes showed that at least two lineages of ExPEC-like plasmids could be discerned. Further, virulence plasmids from Avian Pathogenic E. coli and NMEC plasmids could not be differentiated based solely on the genes of the core plasmid genome.


Assuntos
Escherichia coli/patogenicidade , Doenças do Recém-Nascido/microbiologia , Meningite devida a Escherichia coli/microbiologia , Plasmídeos/genética , Sequência de Bases , Escherichia coli/genética , Genes Bacterianos/genética , Humanos , Recém-Nascido , Dados de Sequência Molecular , Filogenia , Plasmídeos/isolamento & purificação , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
5.
Virulence ; 6(8): 777-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26407066

RESUMO

Neonatal meningitis Escherichia coli K1 (NMEC) are thought to be transmitted from mothers to newborns during delivery or by nosocomial infections. However, the source of E. coli K1 causing these infections is not clear. Avian pathogenic E. coli (APEC) have the potential to cause infection in humans while human E. coli have potential to cause colibacillosis in poultry, suggesting that these strains may lack host specificity. APEC strains are capable of causing meningitis in newborn rats; however, it is unclear whether these bacteria use similar mechanisms to that of NMEC to establish disease. Using four representative APEC and NMEC strains that belong to serotype O18, we demonstrate that these strains survive in human serum similar to that of the prototypic NMEC strain E44, a derivative of RS218. These bacteria also bind and enter both macrophages and human cerebral microvascular endothelial cells (HCMEC/D3) with similar frequency as that of E44. The amino acid sequences of the outer membrane protein A (OmpA), an important virulence factor in the pathogenesis of meningitis, are identical within these representative APEC and NMEC strains. Further, these strains also require FcγRI-α chain (CD64) and Ecgp96 as receptors for OmpA in macrophages and HCMEC/D3, respectively, to bind and enter these cells. APEC and NMEC strains induce meningitis in newborn mice with varying degree of pathology in the brains as assessed by neutrophil recruitment and neuronal apoptosis. Together, these results suggest that serotype O18 APEC strains utilize similar pathogenic mechanisms as those of NMEC strains in causing meningitis.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/patogenicidade , Meningite devida a Escherichia coli/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sequência de Bases , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/patologia , Expressão Gênica , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Meningite devida a Escherichia coli/patologia , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Células RAW 264.7 , Receptores de IgG/imunologia , Análise de Sequência de DNA , Sorogrupo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA