Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Toxicol ; : 1-14, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860720

RESUMO

During the COVID-19 pandemic, several drugs were repositioned and combined to quickly find a way to mitigate the effects of the infection. However, the adverse effects of these combinations on the gastrointestinal tract are unknown. We aimed investigate whether Hydroxychloroquine (HD), Azithromycin (AZ), and Ivermectin (IV) used in combination for the treatment of COVID-19, can lead to the development of gastrointestinal disorders. This is a systematic review and network meta-analysis conducted using Stata and Revman software, respectively. The protocol was registered with PROSPERO (CRD42023372802). A search of clinical trials in Cochrane Library databases, Embase, Web of Science, Lilacs, PubMed, Scopus and Clinicaltrials.gov conducted on November 26, 2023. The eligibility of the studies was assessed based on PICO criteria, including trials that compared different treatments and control group. The analysis of the quality of the evidence was carried out according to the GRADE. Six trials involving 1,686 COVID-19 patients were included. No trials on the association of HD or AZ with IV met the inclusion criteria, only studies on the association between HD and AZ were included. Nausea, vomiting, diarrhea, abdominal pain and increased transaminases were related. The symptoms of vomiting and nausea were evaluated through a network meta-analysis, while the symptom of abdominal pain was evaluated through a meta-analysis. No significant associations with these symptoms were observed for HD, AZ, or their combination, compared to control. Low heterogeneity and absence of inconsistency in indirect and direct comparisons were noted. Limitations included small sample sizes, varied drug dosages, and potential publication bias during the pandemic peak. This review unveils that there are no associations between gastrointestinal adverse effects and the combined treatment of HD with AZ in the management of COVID-19, as compared to either the use of a control group or the administration of the drugs individually, on the other hand, highlighting the very low or low certainty of evidence for the evaluated outcomes. To accurately conclude the absence of side effects, further high-quality randomized studies are needed.

2.
Amino Acids ; 54(5): 733-747, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35279763

RESUMO

Bombesin mediates several biological activities in the gastrointestinal (GI) tract and central nervous system in mammals, including smooth muscle contraction, secretion of GI hormones and regulation of homeostatic mechanisms. Here, we report a novel bombesin-like peptide isolated from Boana raniceps. Its amino acid sequence, GGNQWAIGHFM-NH2, was identified and structurally confirmed by HPLC, MS/MS and 454-pyrosequencing; the peptide was named BR-bombesin. The effect of BR-bombesin on smooth muscle contraction was assessed in ileum and esophagus, and its anti-secretory activity was investigated in the stomach. BR-bombesin exerted significant contractile activity with a concentration-response curve similar to that of commercially available bombesin in ileum strips of Wistar rats. In esophageal strips, BR-bombesin acted as an agonist, as many other bombesin-related peptides act, although with different behavior compared to the muscarinic agonist carbachol. Moreover, BR-bombesin inhibited stomach secretion by approximately 50% compared to the untreated control group. This novel peptide has 80% and 70% similarity with the 10-residue C-terminal domain of human neuromedin B (NMB) and human gastrin releasing peptide (GRP10), respectively. Molecular docking analysis revealed that the GRP receptor had a binding energy equal to - 7.3 kcal.mol-1 and - 8.5 kcal.mol-1 when interacting with bombesin and BR-bombesin, respectively. Taken together, our data open an avenue to investigate BR-bombesin in disorders that involve gastrointestinal tract motility and acid gastric secretion.


Assuntos
Bombesina , Receptores da Bombesina , Animais , Anuros/metabolismo , Bombesina/metabolismo , Bombesina/farmacologia , Mamíferos/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Ratos , Ratos Wistar , Receptores da Bombesina/genética , Receptores da Bombesina/metabolismo , Estômago , Espectrometria de Massas em Tandem
3.
Amino Acids ; 53(9): 1415-1430, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34410507

RESUMO

Oral mucositis is an inflammation of the oral mucosa mainly resulting from the cytotoxic effect of 5-fluorouracil (5-FU). The literature shows anti-inflammatory action of L-cysteine (L-cys) involving hydrogen sulfide (H2S). In view of these properties, we investigate the effect of L-cys in oral mucositis induced by 5-FU in hamsters. The animals were divided into the following groups: saline 0.9%, mechanical trauma, 5-FU 60-40 mg/kg, L-cys 10/40 mg and NaHS 27 µg/kg. 5-FU was administered on days 1st to 2nd; 4th day excoriations were made on the mucosa; 5th-6th received L-cys and NaHS. For data analysis, histological analyses, mast cell count, inflammatory and antioxidants markers, and immunohistochemistry (cyclooxygenase-2(COX-2)/inducible nitric oxide synthase (iNOs)/H2S) were performed. Results showed that L-cys decreased levels of inflammatory markers, mast cells, levels of COX-2, iNOS and increased levels of antioxidants markers and H2S when compared to the group 5-FU (p < 0.005). It is suggested that L-cys increases the H2S production with anti-inflammatory action in the 5-FU lesion.


Assuntos
Anti-Inflamatórios/farmacologia , Cisteína/farmacologia , Fluoruracila/toxicidade , Sulfeto de Hidrogênio/metabolismo , Inflamação/prevenção & controle , Estomatite/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/toxicidade , Antioxidantes/farmacologia , Cricetinae , Ciclo-Oxigenase 2/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Estomatite/induzido quimicamente , Estomatite/imunologia , Estomatite/patologia
4.
Drug Dev Res ; 80(5): 666-679, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31112325

RESUMO

Inflammation is the response of the body to noxious stimuli such as infections, trauma, or injury. Experimental studies have shown that vanillic acid has anti-inflammatory effects. The objective of this study was to investigate the anti-inflammatory and antipyretic properties of the derivative of vanillic acid, isopropyl vanillate (ISP-VT), in mice. The results of this study indicated that ISP-VT reduced paw edema induced by carrageenan, dextran sulfate (DEX), compound 48/80, serotonin, bradykinin (BK), histamine (HIST), and prostaglandin E2 (PGE2). Furthermore, ISP-VT reduced recruitment of leukocytes and neutrophils and reduced its adhesion and rolling, and decreased myeloperoxidase enzyme activity (MPO), cytokine levels (tumor necrosis factor-α and interleukin-6), and vascular permeability. ISP-VT also significantly reduced the expression of cyclooxygenase-2 (COX-2) in subplantar tissue of mice. ISP-VT inhibited COX-2 selectively compared to the standard drug. Our results showed that although ISP-VT binds to COX-1, it is less toxic than indomethacin, as evidenced by MPO analysis of gastric tissue. Treatment with the ISP-VT significantly reduced rectal temperature in yeast-induced hyperthermia in mice. Our results showed that the main mechanism ISP-VT-induced anti-inflammatory activity is by inhibition of COX-2. In conclusion, our results indicate that ISP-VT has potential as an anti-inflammatory and antipyretic therapeutic compound.


Assuntos
Anti-Inflamatórios/administração & dosagem , Carragenina/efeitos adversos , Inibidores de Ciclo-Oxigenase/administração & dosagem , Inflamação/tratamento farmacológico , Fenóis/efeitos adversos , Ácido Vanílico/química , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Feminino , Inflamação/induzido quimicamente , Inflamação/metabolismo , Injeções Intraperitoneais , Masculino , Camundongos , Modelos Moleculares , Fenóis/síntese química , Fenóis/química , Fenóis/farmacologia , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
5.
Nitric Oxide ; 78: 60-71, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29857061

RESUMO

Activation of 5' adenosine monophosphate-activated protein kinase (AMPK) stimulates production of the gaseous mediators nitric oxide (NO) and carbon monoxide (CO), which are involved in mucosal defense and gastroprotection. As AMPK itself has gastroprotective effects against several gastric ulcer etiologies, in the present study, we aimed to elucidate whether AMPK may also prevent ethanol-induced injury and play a key role in the associated gastroprotection mediated by hydrogen sulfide (H2S), NO, and CO. Mice were pretreated with AICAR (20 mg/kg, an AMPK activator) alone or with 50% ethanol. Other groups were pretreated with respective gaseous mediator inhibitors PAG, l-NAME, or ZnPP IX 30 min prior to AICAR, or with gaseous mediator donors NaHS, Lawesson's reagent and l-cysteine (H2S), SNP, l-Arginine (NO), Hemin, or CORM-2 (CO) 30 min prior to ethanol with or without compound C (10 mg/kg, a non-selective AMPK inhibitor). H2S, nitrate/nitrite (NO3-/NO2-), bilirubin levels, GSH and MDA concentration were evaluated in the gastric mucosa. The gastric mucosa was also collected for histopathological analysis and AMPK expression assessment by immunohistochemistry. Pretreatment with AICAR attenuated the ethanol-induced injury and increased H2S and bilirubin levels but not NO3-/NO2- levels in the gastric mucosa. In addition, inhibition of H2S, NO, or CO synthesis exacerbated the ethanol-induced gastric damage and inhibited the gastroprotection by AICAR. Pretreatment with compound C reversed the gastroprotective effect of NaHS, Lawesson's reagent, l-cysteine, SNP, l-Arginine, CORM-2, or Hemin. Compound C also reversed the effect of NaHS on H2S production, SNP on NO3-/NO2- levels, and Hemin on bilirubin levels. Immunohistochemistry revealed that AMPK is present at basal levels mainly in the gastric mucosa cells, and was increased by pretreatment with NaHS, SNP, and CORM-2. In conclusion, our findings indicate that AMPK activation exerts gastroprotection against ethanol-induced gastric damage and mutually interacts with H2S, NO, or CO to facilitate this process.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Monóxido de Carbono/metabolismo , Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Gastropatias/prevenção & controle , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Bilirrubina/metabolismo , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Etanol , Feminino , Mucosa Gástrica/patologia , Masculino , Camundongos , Ribonucleotídeos/farmacologia , Gastropatias/induzido quimicamente
6.
Nitric Oxide ; 76: 152-163, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28943473

RESUMO

Hydrogen sulphide (H2S) is a gasotransmitter that participates in various physiological and pathophysiological processes within the gastrointestinal tract. We studied the effects and possible mechanism of action of H2S in secretory diarrhoea caused by cholera toxin (CT). The possible mechanisms of action of H2S were investigated using an intestinal fluid secretion model in isolated intestinal loops on anaesthetized mice treated with CT. NaHS and Lawesson's reagent and l-cysteine showed antisecretory activity through reduction of intestinal fluid secretion and loss of Cl- induced by CT. Pretreatment with an inhibitor of cystathionine-γ-lyase (CSE), dl-propargylglycine (PAG), reversed the effect of l-cysteine and caused severe intestinal secretion. Co-treatment with PAG and a submaximal dose of CT increased intestinal fluid secretion, thus supporting the role of H2S in the pathophysiology of cholera. CT increased the expression of CSE and the production of H2S. Pretreatment with PAG did not reverse the effect of SQ 22536 (an AC inhibitor), bupivacaine (inhibitor of cAMP production), KT-5720 (a PKA inhibitor), and AICAR (an AMPK activator). The treatment with Forskolin does not reverse the effects of the H2S donors. Co-treatment with either NaHS or Lawesson's reagent and dorsomorphin (an AMPK inhibitor) did not reverse the effect of the H2S donors. H2S has antisecretory activity and is an essential molecule for protection against the intestinal secretion induced by CT. Thus, H2S donor drugs are promising candidates for cholera therapy. However, more studies are needed to elucidate the possible mechanism of action.


Assuntos
Toxina da Cólera/antagonistas & inibidores , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Sulfeto de Hidrogênio/farmacologia , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Adenilil Ciclases/metabolismo , Animais , Toxina da Cólera/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Masculino , Camundongos
7.
Nitric Oxide ; 64: 1-6, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137610

RESUMO

Hydrogen sulfide (H2S) is a signaling molecule in the gastrointestinal tract. H2S production can derive from d-cysteine via various pathways, thus pointing to a new therapeutic approach: delivery of H2S to specific tissues. This study was designed to evaluate the concentration and effects of H2S (generated by d-amino acid oxidase [DAO] from d-cysteine) in the gastric mucosa and the protective effects against ethanol-induced lesions in mice. Mice were treated with l-cysteine or d-cysteine (100 mg/kg per os). Other groups received oral l-propargylglycine (cystathionine γ-lyase inhibitor, 100 mg/kg) or indole-2-carboxylate (DAO inhibitor), and 30 min later, received d- or l-cysteine. After 30 min, 50% ethanol (2.5 mL/kg, per os) was administered. After 1 h, the mice were euthanized and their stomachs excised and analyzed. Pretreatment with either l-cysteine or d-cysteine significantly reduced ethanol-induced lesions. Pretreatment of d-cysteine- or l-cysteine-treated groups with indole-2-carboxylate reversed the gastroprotective effects of d-cysteine but not l-cysteine. Histological analysis revealed that pretreatment with d-cysteine decreased hemorrhagic damage, edema, and the loss of the epithelium, whereas the administration of indole-2-carboxylate reversed these effects. d-Cysteine also reduced malondialdehyde levels but maintained the levels of reduced glutathione. Furthermore, pretreatment with d-cysteine increased the synthesis of H2S. Thus, an H2S-generating pathway (involving d-cysteine and DAO) is present in the gastric mucosa and protects this tissue from ethanol-induced damage by decreasing direct oxidative damage.


Assuntos
Antioxidantes/farmacologia , Cisteína/farmacologia , D-Aminoácido Oxidase/metabolismo , Mucosa Gástrica , Sulfeto de Hidrogênio/metabolismo , Animais , Etanol/efeitos adversos , Feminino , Mucosa Gástrica/química , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Glutationa/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Gastropatias/induzido quimicamente , Gastropatias/metabolismo
8.
Dig Dis Sci ; 61(2): 400-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26403426

RESUMO

BACKGROUND: It has been reported that simvastatin, a statin commonly prescribed for its anti-inflammatory and antioxidant effects, has gastroprotective effects in indomethacin and ethanol-induced gastric ulcers. However, the effects of simvastatin on alendronate-induced gastric mucosal injury remain unexplored. AIM: This study investigated the use of simvastatin for the treatment of alendronate-induced gastric ulcers in rats. METHODS: Female rats were pretreated with vehicle or simvastatin (20 and 60 mg/kg p.o.). After 1 h, the rats received alendronate (50 mg/kg p.o.). Simvastatin was administered once daily for 7 days, and from the fourth day of simvastatin treatment, alendronate was administered once daily for 4 days. On the final day of treatment, 4 h after alendronate administration, animals were euthanized, their stomachs were removed, and gastric damage was measured. Samples of the stomach were fixed in 10 % formalin immediately after their removal for subsequent histopathological assessment. Unfixed samples were weighed, frozen at -80 °C until assayed for glutathione (GSH), malondialdehyde (MDA), and cytokine levels and myeloperoxidase (MPO) activity. A third group was used to measure mucus and gastric secretion. RESULTS: Pretreatment with simvastatin prevented alendronate-induced macroscopic gastric damage and reduced the levels of MDA and GSH, TNF-α and IL-1ß, MPO activity, and mucus levels, in the stomach. CONCLUSIONS: This study demonstrates the protective effects of simvastatin against alendronate-induced gastric ulceration. Maintenance of mucosal integrity, inhibition of neutrophil activity, and reduced oxidative stress associated with decreased gastric acidity may explain the gastroprotective effects of simvastatin.


Assuntos
Alendronato/toxicidade , Mucosa Gástrica/efeitos dos fármacos , Sinvastatina/farmacologia , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/prevenção & controle , Animais , Conservadores da Densidade Óssea/toxicidade , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Malondialdeído/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Ratos , Ratos Wistar , Sinvastatina/administração & dosagem , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
Drug Dev Res ; 76(3): 143-51, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25959135

RESUMO

Long-term use nonsteroidal anti-inflammatory drug is associated with gastrointestinal (GI) lesion formation. The aim of this study was to investigate the protective activity of cashew gum (CG), a complex heteropolysaccharide extracted from Anacardium occidentale on naproxen (NAP)-induced GI damage. Male Wistar rats were pretreated with vehicle or CG (1, 3, 10, and 30 mg/kg, p.o.) twice daily for 2 days; after 1 h, NAP (80 mg/kg, p.o.) was administered. The rats were euthanized on the 2nd day of treatment, 4 h after NAP administration. Stomach lesions were measured using digital calipers. The medial small intestine was used for the evaluation of macroscopic lesion scores. Samples of the stomach and the intestine were used for histological evaluation, and assays for glutathione (GSH), malonyldialdehyde (MDA), and myeloperoxidase (MPO). Additional rats were used to measure gastric mucus and secretion. Pretreatment with CG reduced the macroscopic and microscopic damage induced by NAP. CG significantly attenuated NAP-induced alterations in MPO, GSH, and MDA levels. Furthermore, CG returned adherent mucus levels to normal values. These results suggest that CG has a protective effect against GI damage via mechanisms that involve the inhibition of inflammation and increasing the amount of adherent mucus in mucosa.


Assuntos
Anacardium , Gastroenteropatias/induzido quimicamente , Gastroenteropatias/prevenção & controle , Naproxeno/efeitos adversos , Gomas Vegetais/uso terapêutico , Polissacarídeos/uso terapêutico , Animais , Gastroenteropatias/patologia , Masculino , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Gomas Vegetais/isolamento & purificação , Polissacarídeos/isolamento & purificação , Ratos , Ratos Wistar
10.
Artigo em Inglês | MEDLINE | ID: mdl-38433146

RESUMO

Chronic use of omeprazole has been linked to central effects alongside with the global concern of increasing appearance of neuropsychiatric disorders. This study aimed to identifying behavioral, inflammatory, and oxidative stress alterations after long-term administration of omeprazole. C57BL/6 mice were divided in groups: OME and Sham, each received either solutions of omeprazole or vehicle, administered for 28 days by gavage. Results observed in the omeprazole-treated mice: Decrease in the crossing parameter in the open field, no change in the motor performance assessed by rotarod, an immobility time reduction in the forced swimming test, improved percentage of correct alternances in the Ymaze and an exploration time of the novel object reduction in the novel object recognition. Furthermore, a reduced weight gain and hippocampal weight were observed. There was an increase in the cytokine IL1-ß levels in both prefrontal cortex (PFC) and serum, whereas TNF-α increased only in the PFC. Nitrite levels increased in the hippocampus (HP) and PFC, while malondialdehyde (MDA) and glutathione (GSH) levels decreased. These findings suggest that omeprazole improves depressive-like behavior and working memory, likely through the increase in nitrite and reduction in MDA levels in PFC and HP, whereas, the impairment of the recognition memory is more likely to be related to the reduced hippocampal weight. The diminished weight gain might be associated with the IL-1ß increased levels in the peripheral blood. Altogether, omeprazole showed to have the potential to impact at central level and inflammatory and oxidative parameters might exert a role between it.

11.
Laryngoscope ; 134(7): 3080-3085, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38214310

RESUMO

OBJECTIVE: This study aimed to evaluate the role of pepsin inhibitors in the inflammatory response and their effects on laryngeal mucosal integrity during gastroesophageal reflux (GERD) under in vivo conditions. METHODS: A surgical model of GERD was used, in which mice were treated with pepstatin (0.3 mg/kg) or darunavir (8.6 mg/kg) for 3 days. On the third day after the experimental protocol, the laryngeal samples were collected to assess the severity of inflammation (wet weight and myeloperoxidase activity) and mucosal integrity (transepithelial electrical resistance and paracellular epithelial permeability to fluorescein). RESULTS: The surgical GERD model was reproduced. It showed features of inflammation and loss of barrier function in the laryngeal mucosa. Pepstatin and darunavir administration suppressed laryngeal inflammation and preserved laryngeal mucosal integrity. CONCLUSION: Pepsin inhibition by the administration of pepstatin and darunavir improved inflammation and protected the laryngeal mucosa in a mouse experimental model of GERD. LEVEL OF EVIDENCE: NA Laryngoscope, 134:3080-3085, 2024.


Assuntos
Modelos Animais de Doenças , Refluxo Gastroesofágico , Pepsina A , Animais , Camundongos , Refluxo Gastroesofágico/tratamento farmacológico , Pepstatinas/farmacologia , Mucosa Laríngea/efeitos dos fármacos , Mucosa Laríngea/patologia , Masculino , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle
12.
Mucosal Immunol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38555027

RESUMO

Studies have reported the occurrence of gastrointestinal (GI) symptoms, primarily diarrhea, in COVID-19. However, the pathobiology regarding COVID-19 in the GI tract remains limited. This work aimed to evaluate SARS-CoV-2 Spike protein interaction with gut lumen in different experimental approaches. Here, we present a novel experimental model with the inoculation of viral protein in the murine jejunal lumen, in vitro approach with human enterocytes, and molecular docking analysis. Spike protein led to increased intestinal fluid accompanied by Cl- secretion, followed by intestinal edema, leukocyte infiltration, reduced glutathione levels, and increased cytokine levels [interleukin (IL)-6, tumor necrosis factor-α, IL-1ß, IL-10], indicating inflammation. Additionally, the viral epitope caused disruption in the mucosal histoarchitecture with impairment in Paneth and goblet cells, including decreased lysozyme and mucin, respectively. Upregulation of toll-like receptor 2 and toll-like receptor 4 gene expression suggested potential activation of local innate immunity. Moreover, this experimental model exhibited reduced contractile responses in jejunal smooth muscle. In barrier function, there was a decrease in transepithelial electrical resistance and alterations in the expression of tight junction proteins in the murine jejunal epithelium. Additionally, paracellular intestinal permeability increased in human enterocytes. Finally, in silico data revealed that the Spike protein interacts with cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride conductance (CaCC), inferring its role in the secretory effect. Taken together, all the events observed point to gut impairment, affecting the mucosal barrier to the innermost layers, establishing a successful experimental model for studying COVID-19 in the GI context.

13.
Biomedicines ; 12(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540195

RESUMO

Defined as systemic hypotension caused by intense vasodilation due to the loss of systemic vascular resistance, vasoplegic syndrome (VS) is associated with elevated morbidity and mortality in humans. Although vasopressors such as norepinephrine and vasopressin are the first-choice drugs for VS treatment, several other drugs such as methylene blue (MB) can be used as adjuvant therapy including rescue therapy. To develop new pharmacological strategies to reduce the risk of VS, we investigated the effects of treatments with MB (2 mg/kg/IV), omeprazole (OME, 10 mg/kg/IV), and their combination in an animal model of cardiac ischemia-reperfusion (CIR). The ventricular arrhythmia (VA), atrioventricular block (AVB), and lethality (LET) incidence rates caused by CIR (evaluated via ECG) and serum levels of the cardiac lesion biomarkers creatine kinase-MB (CK-MB) and troponin I (TnI) in adult rats pretreated with saline solution 0.9% and submitted to CIR (SS + CIR group) were compared to those pretreated with MB (MB + CIR group), OME (OME + CIR group), or the MB + OME combination (MB + OME + CIR group). The AVB and LET incidence rates in the MB + CIR (100%), OME + CIR (100%), and MB + OME + CIR (100%) groups were significantly higher compared to the SS + CIR group (60%). The serum level of CK-MB in these groups were also significantly higher compared to the SS + CIR group, demonstrating that the treatments before CIR with MB, OME, and MB + OME produced similar effects in relation to cardiac function and the occurrence of lesions. These results demonstrate that the treatment of animals subjected to the CIR protocol with OME produced the same effects promoted by the treatment with MB, which may suggest the possibility of using OME alone or in combination with MB in medical clinics in treatment of VS.

14.
J Pharm Pharmacol ; 76(6): 732-742, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38546507

RESUMO

OBJECTIVES: Angico gum (AG) (Anadenanthera colubrina var. Cebil [Griseb.] Altschul) is utilized by some Brazilian communities to alleviate symptoms from gastroesophageal reflux disease. Here, we aimed to investigate the "in vitro" topical protective capacity of AG on human esophageal mucosa. METHODS: Biopsies of the distal esophageal mucosa were collected from 35 patients with heartburn (24 non-erosive and 11 with erosive oesophagitis (EE)) and mounted in Üssing chambers. AG was applied topically, followed by exposure with acid solution (pH 2.0 or pH 1.0), where transepithelial electrical resistance (TER) and The transepithelial permeability for fluorescein was assessed. The incubation of the AG labeled with FITC in the esophageal mucosa was localized by fluorescence microscopy. KEY FINDINGS: Pretreatment with AG prevented the drop in TER induced by acid solution, as well as significantly decreases the fluorescein permeability in non-erosive patients. The protective effect of AG was sustained for up to 120 min both in biopsies of non-erosive and erosive esophagitis. Confocal microscope images showed mucosal luminal adherence of FITC-labeled AG. CONCLUSION: AG had a prolonged topical protective effect against acid solution in mucosal biopsies of patients with non-erosive and erosive esophagitis.


Assuntos
Mucosa Esofágica , Refluxo Gastroesofágico , Humanos , Refluxo Gastroesofágico/tratamento farmacológico , Refluxo Gastroesofágico/prevenção & controle , Mucosa Esofágica/efeitos dos fármacos , Mucosa Esofágica/patologia , Mucosa Esofágica/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Permeabilidade , Impedância Elétrica , Administração Tópica , Biopolímeros , Idoso , Fluoresceína/administração & dosagem , Esôfago/efeitos dos fármacos , Esôfago/patologia , Esôfago/metabolismo , Azia/tratamento farmacológico , Azia/prevenção & controle , Relevância Clínica
15.
Int J Biol Macromol ; 260(Pt 1): 129397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219933

RESUMO

Biotechnological advancements require the physicochemical alteration of molecules to enhance their biological efficacy for the effective treatment of gastric ulcers. The study aimed to produce a polyelectrolytic compound from red angico gum (AG) by carboxymethylation, evaluate its physicochemical characteristics and investigate gastric protection against ethanol-induced ulcers. AG and carboxymethylated angico gum (CAG) were characterized by Fourier transform infrared spectroscopy, determination of the degree of substitution and gel permeation chromatography (GPC) and 13C NMR techniques. The results demonstrated that the modification of the polymer was satisfactory, presenting conformational changes e improving the interaction with the gastric mucosa. AG and CAG reduced macroscopic and microscopic damage such as edema, hemorrhage and cell loss caused by exposure of the mucosa to alcohol. Both demonstrated antioxidant activity in vitro, and in vivo, pretreatment with gums led to the restoration of superoxide dismutase and glutathione levels compared to the injured group. Concurrently, the levels of malondialdehyde and nitrite decreased. Atomic force microscopy showed that CAG presented better conformational properties of affinity and protection with the gastric mucosa compared to AG in the acidic pH. Based on our findings, it is suggested that this compound holds promise as a prospective product for future biotechnological applications.


Assuntos
Colubrina , Fabaceae , Úlcera Gástrica , Estudos Prospectivos , Estômago , Antioxidantes/efeitos adversos , Mucosa Gástrica , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Extratos Vegetais/química
16.
Immunopharmacol Immunotoxicol ; 35(1): 93-100, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22830978

RESUMO

Many algal species contain relatively high concentrations of polysaccharide substances, a number of which have been shown to have anti-inflammatory and/or immunomodulatory activity. In this study, we evaluated the anti-inflammatory and antinociceptive effects in mice of a sulfated polysaccharide fraction (PLS) extracted from the algae Gracilaria caudata. The antiinflammatory activity of PLS was evaluated using several inflammatory agents (carrageenan, dextran, bradykinin, and histamine) to induce paw edema and peritonitis in Swiss mice. Samples of the paw tissue and peritoneal fluid were removed to determine myeloperoxidase (MPO) activity or TNF-α and IL-1ß levels, respectively. Mechanical hypernociception was induced by subcutaneous injection of carrageenan into the plantar surface of the paw. Pretreatment of mice by intraperitoneal administration of PLS (2.5, 5, and 10 mg/kg) significantly and dose-dependently reduced carrageenan-induced paw edema (p < 0.05) compared to vehicle-treated mice. Similarly, PLS 10 mg/kg effectively inhibited edema induced by dextran and histamine; however, edema induced by bradykinin was unaffected by PLS. PLS 10 mg/kg inhibited total and differential peritoneal leukocyte counts following carrageenan-induced peritonitis. Furthermore, PLS reduced carrageenan-increased MPO activity in paws and reduced cytokine levels in the peritoneal cavity. Finally PLS pretreatment also reduced hypernociception 3-4 h after carrageenan. We conclude that PLS reduces the inflammatory response and hypernociception in mice by reducing neutrophil migration and cytokines concentration.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Gracilaria/química , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Rodófitas/química , Animais , Carragenina/efeitos adversos , Edema/induzido quimicamente , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Contagem de Leucócitos/métodos , Masculino , Camundongos , Peritonite/induzido quimicamente , Peroxidase/metabolismo , Extratos Vegetais/química , Polissacarídeos/química , Sulfatos/química , Sulfatos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
17.
Eur J Pharmacol ; 960: 176118, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37871764

RESUMO

Gastric lesions have several aetiologies, among which stress is the most prominent. Therefore, identification of new therapies to prevent stress is of considerable importance. Alpha-ketoglutarate (α-kg) several beneficial effects and has shown promise in combating oxidative stress, inflammation, and premature aging. Thus, this study aimed to evaluate the protective effect of α-kg in a gastric damage model by water-immersion restraint stress (WIRS). Pretreatment with α-kg decreased stress-related histopathological scores of tissue oedema, cell loss, and inflammatory infiltration. The α-kg restored the percentage of type III collagen fibres. Mucin levels were preserved as well as the structure and area of the myenteric plexus ganglia were preserved after pretreatment with α-kg. Myeloperoxidase (MPO) levels and the expression of pro-inflammatory cytokines (TNF-α and IL-1ß) were also reduced following α-kg pretreatment. Decreased levels of glutathione (GSH) in the stress group were restored by α-kg. The omeprazole group was used as standard drug e also demonstrated improve on some parameters after the exposition to WIRS as inflammatory indexes, GSH and mucin. Through this, was possible to observe that α-kg can protect the gastric mucosa exposed to WIRS, preserve tissue architecture, reduce direct damage to the mucosa and inflammatory factors, stimulate the production of type III collagen and mucin, preserve the myenteric plexus ganglia, and maintain antioxidant potential. Due to, we indicate that α-kg has protective activity of the gastric mucosa, demonstrating its ability to prevent damage associated with gastric lesions caused by stress.


Assuntos
Ácidos Cetoglutáricos , Úlcera Gástrica , Camundongos , Animais , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Ácidos Cetoglutáricos/uso terapêutico , Úlcera Gástrica/patologia , Colágeno Tipo III/metabolismo , Imersão , Mucosa Gástrica , Glutationa/metabolismo , Mucinas/metabolismo , Água/metabolismo , Restrição Física/efeitos adversos
18.
Laryngoscope ; 133(1): 162-168, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258096

RESUMO

OBJECTIVE: This study aimed to evaluate the in vivo protective effect of the angico gum biopolymer in reducing the inflammatory response and preserving the integrity of the laryngeal and esophageal mucosa. STUDY DESIGN: Animal study. METHODS: A murine surgical model of gastroesophageal reflux disease was accomplished and subsequently treated with angico gum or omeprazole. On days 3 and 7 post surgery, samples of the larynx and esophagus, respectively, were collected to measure the level of inflammation (wet weight and myeloperoxidase activity) and mucosal integrity (transepithelial electrical resistance and mucosal permeability to fluorescein). RESULTS: Angico gum and omeprazole decreased laryngeal inflammation (wet weight and myeloperoxidase activity) and dramatically improved the integrity of the laryngeal mucosa. It also reduced inflammation (decreased wet weight and myeloperoxidase activity) of the esophagus and preserved the barrier function (inferred by assessing the integrity of the mucosa). CONCLUSION: This study demonstrates the protective effect of angico gum in an experimental gastroesophageal reflux disease model. Angico gum attenuates inflammation and impairment of the mucosal barrier function not only in the larynx but also in the esophagus. LEVEL OF EVIDENCE: NA Laryngoscope, 133:162-168, 2023.


Assuntos
Mucosa Esofágica , Refluxo Gastroesofágico , Camundongos , Animais , Refluxo Gastroesofágico/tratamento farmacológico , Impedância Elétrica , Mucosa , Modelos Animais de Doenças
19.
J Cardiovasc Dev Dis ; 10(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36975867

RESUMO

BACKGROUND: Although several studies suggest that heparins prevent arrhythmias caused by acute myocardial infarction (AMI), the molecular mechanisms involved remain unclear. To investigate the involvement of pharmacological modulation of adenosine (ADO) signaling in cardiac cells by a low-molecular weight heparin (enoxaparin; ENOX) used in AMI therapy, the effects of ENOX on the incidences of ventricular arrhythmias (VA), atrioventricular block (AVB), and lethality (LET) induced by cardiac ischemia and reperfusion (CIR) were evaluated, with or without ADO signaling blockers. METHODS: To induce CIR, adult male Wistar rats were anesthetized and subjected to CIR. Electrocardiogram (ECG) analysis was used to evaluate CIR-induced VA, AVB, and LET incidence, after treatment with ENOX. ENOX effects were evaluated in the absence or presence of an ADO A1-receptor antagonist (DPCPX) and/or an inhibitor of ABC transporter-mediated cAMP efflux (probenecid, PROB). RESULTS: VA incidence was similar between ENOX-treated (66%) and control rats (83%), but AVB (from 83% to 33%) and LET (from 75% to 25%) incidences were significantly lower in rats treated with ENOX. These cardioprotective effects were blocked by either PROB or DPCPX. CONCLUSION: These results indicate that ENOX was effective in preventing severe and lethal arrhythmias induced by CIR due to pharmacological modulation of ADO signaling in cardiac cells, suggesting that this cardioprotective strategy could be promising in AMI therapy.

20.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37895945

RESUMO

Acute myocardial infarction (AMI) is the main cause of morbidity and mortality worldwide and is characterized by severe and fatal arrhythmias induced by cardiac ischemia/reperfusion (CIR). However, the molecular mechanisms involved in these arrhythmias are still little understood. To investigate the cardioprotective role of the cardiac Ca2+/cAMP/adenosine signaling pathway in AMI, L-type Ca2+ channels (LTCC) were blocked with either nifedipine (NIF) or verapamil (VER), with or without A1-adenosine (ADO), receptors (A1R), antagonist (DPCPX), or cAMP efflux blocker probenecid (PROB), and the incidence of ventricular arrhythmias (VA), atrioventricular block (AVB), and lethality (LET) induced by CIR in rats was evaluated. VA, AVB and LET incidences were evaluated by ECG analysis and compared between control (CIR group) and intravenously treated 5 min before CIR with NIF 1, 10, and 30 mg/kg and VER 1 mg/kg in the presence or absence of PROB 100 mg/kg or DPCPX 100 µg/kg. The serum levels of cardiac injury biomarkers total creatine kinase (CK) and CK-MB were quantified. Both NIF and VER treatment were able to attenuate cardiac arrhythmias caused by CIR; however, these antiarrhythmic effects were abolished by pretreatment with PROB and DPCPX. The total serum CK and CK-MB were similar in all groups. These results indicate that the pharmacological modulation of Ca2+/cAMP/ADO in cardiac cells by means of attenuation of Ca2+ influx via LTCC and the activation of A1R by endogenous ADO could be a promising therapeutic strategy to reduce the incidence of severe and fatal arrhythmias caused by AMI in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA