Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Microbiol ; 77(10): 3192-3200, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32725341

RESUMO

A new petroleum-degrading bacterium, designated strain GC2T, was isolated from Bozkus 1 petroleum station in Diyarbakir, located in the southeast of Turkey. Cells were Gram-negative staining, aerobic, coccoid-rods, non-motile, non-spore-forming. The bacterium was found to degrade 100% of n-alkanes ranging from C11 to C34 presented in the 1% crude oil after incubation of 7 days. The membrane phospholipids were 1,2 diacylglycero-3-phosphorylethanolamine (PEA), phosphatidylglycerol (PG), dipalmitoyl-sn-glycerol 1- phosphocholine (PC1), 1,2 dipalmitoyl-sn-glycero-3-phosphocholine monohydrate (PC3), cardiolipin also called diphosphatidylglycerol (CL) and l-α- phosphatidic acid, dipalmitoyl (AP); predominant respiratory ubiquinone was Q-8 and C16:0, C18:1ω9c and C16:1 were the major cellular fatty acids. The 16S rRNA sequence analysis revealed that the strain GC2T was a member of genus Acinetobacter and was most closely related to Acinetobacter lwoffii DSM 2403 T (99.79%), Acinetobacter pseudolwoffii ANC 5318 T (98.83%) and Acinetobacter harbinensis HITLi 7 T (98.14%). The rpoB and gyrB gene sequence analysis confirmed that the strain GC2T was a member of genus Acinetobacter and that the closest relative was Acinetobacter lwoffii DSM 2403 T (99.08% and 100% similarity, respectively). DNA-DNA hybridization values between GC2T and its closest relatives ranged from 65.6% (with A. lwoffii) to 5.1% (with A. venetianus). The whole genome sequence of strain GC2T was obtained. The DNA G + C content of this strain was determined to be 42.9 mol %. ANI indexes, in silico estimations of DDH values and wet lab DDH values demonstrated that strain GC2T represents an independent genomospecies. On the basis of phenotypic characteristics, chemotaxonomic, phylogenetic data and DNA-DNA hybridization and whole genome analysis, we propose to assign strain GC2T as a new species of the genus Acinetobacter, for which the name Acinetobacter mesopotamicus sp. nov. is proposed. The type strain of this species is GC2T (DSM 26953 T = JCM 31073 T). The whole genome of strain GC2T has been deposited at DDBJ/ENA/GenBank under the accession JAALFF010000000.


Assuntos
Acinetobacter , Petróleo , Acinetobacter/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo , Turquia
2.
J Cell Physiol ; 233(2): 1266-1277, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28488765

RESUMO

Gastric cancer represents a diffuse and aggressive neoplasm, whose mortality index is among the highest in the world. Predisposing factors are E-cadherin mutations, Helicobacter pylori infection, and a diet rich in salted and smoked food, with a low intake of fresh fruits and vegetables. Here, we analyzed the effect of total lipophilic extracts of two Southern Italy tomato varieties, San Marzano and Corbarino, on an in vitro model of gastric cancer, YCC-1, YCC-2 and YCC-3 cell lines, characterized by different aggressiveness. Our results showed a possible role of these two varieties of tomatoes against typical neoplastic features. The treatment with tomato extracts affected cancer cell ability to grow both in adherence and in semisolid medium, reducing also cell migration ability. No toxic effects were observed on non-tumoral cells. We found, on gastric cancer cell lines, effects on both cell cycle progression and apoptosis modulation. The extent of antineoplastic effects, however, did not seem to correlate with the carotenoid content and antioxidant activity of the two tomato varieties. Our data indicate that San Marzano and Corbarino intake might be further considered as nutritional support not only in cancer prevention, but also for cancer patient diet.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Carotenoides/farmacologia , Solanum lycopersicum/química , Neoplasias Gástricas/tratamento farmacológico , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Carotenoides/isolamento & purificação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Frutas/química , Humanos , Itália , Invasividade Neoplásica , Fitoterapia , Plantas Medicinais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Fatores de Tempo
3.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29180360

RESUMO

Four sponge-associated Antarctic bacteria (i.e., Winogradskyella sp. strains CAL384 and CAL396, Colwellia sp. strain GW185, and Shewanella sp. strain CAL606) were selected for the highly mucous appearance of their colonies on agar plates. The production of extracellular polymeric substances (EPSs) was enhanced by a step-by-step approach, varying the carbon source, substrate and NaCl concentrations, temperature, and pH. The EPSs produced under optimal conditions were chemically characterized, resulting in a moderate carbohydrate content (range, 15 to 28%) and the presence of proteins (range, 3 to 24%) and uronic acids (range, 3.2 to 11.9%). Chemical hydrolysis of the carbohydrate portion revealed galactose, glucose, galactosamine, and mannose as the principal constituents. The potential biotechnological applications of the EPSs were also investigated. The high protein content in the EPSs from Winogradskyella sp. CAL384 was probably responsible for the excellent emulsifying activity toward tested hydrocarbons, with a stable emulsification index (E24) higher than those recorded for synthetic surfactants. All the EPSs tested in this work improved the freeze-thaw survival ratio of the isolates, suggesting that they may be exploited as cryoprotection agents. The addition of a sugar in the culture medium, by stimulating EPS production, also allowed isolates to grow in the presence of higher concentrations of mercury and cadmium. This finding was probably dependent on the presence of uronic acids and sulfate groups, which can act as ligands for cations, in the extracted EPSs.IMPORTANCE To date, biological matrices have never been employed for the investigation of EPS production by Antarctic psychrotolerant marine bacteria. The biotechnological potential of extracellular polymeric substances produced by Antarctic bacteria is very broad and comprises many advantages, due to their biodegradability, high selectivity, and specific action compared to synthetic molecules. Here, several interesting EPS properties have been highlighted, such as emulsifying activity, cryoprotection, biofilm formation, and heavy metal chelation, suggesting their potential applications in cosmetic, environmental, and food biotechnological fields as valid alternatives to the commercial polymers currently used.


Assuntos
Bactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Polissacarídeos Bacterianos/metabolismo , Regiões Antárticas , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Biofilmes , Biotecnologia/métodos , Cádmio/farmacologia , Carboidratos/análise , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos , Hidrocarbonetos/metabolismo , Mercúrio/farmacologia , Proteínas/análise , RNA Ribossômico 16S , Açúcares/farmacologia , Tensoativos , Temperatura , Ácidos Urônicos/análise
4.
Extremophiles ; 22(5): 725-737, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29779131

RESUMO

The thermal ecosystems, including geothermal springs, are proving to be source of thermophiles able to produce extracellular polysaccharides (EPSs). Among the sixteen thermophilic bacilli isolated from sediment sampled from Arzakan geothermal spring, Armenia, two best EPSs producer strains were identified based on 16S rRNA gene sequence analysis and phenotypic characteristics, and designated as Geobacillus thermodenitrificans ArzA-6 and Geobacillus toebii ArzA-8 strains. EPSs production was investigated under different time, temperature and culture media's composition. The highest specific EPSs production yield (0.27 g g-1 dry cells and 0.22 g g-1 dry cells for strains G. thermodenitrificans ArzA-6 and G. toebii ArzA-8, respectively) was observed after 24 h when fructose was used as sole carbon source at 65 °C and pH 7.0. Purified EPSs displayed a high molecular mass: 5 × 105 Da for G. thermodenitrificans ArzA-6 and 6 × 105 Da for G. toebii ArzA-8. Chemical composition and structure of the biopolymers, determined by GC-MS, HPAE-PAD and NMR, showed that both the two EPSs are heteropolymers composed by mannose as major monomer unit. Optical rotation values [α] D25 °C of the two EPSs (2 mg ml-1 H2O) were - 142,135 and - 128,645 for G. thermodenitrificans ArzA-6 and G. toebii ArzA-8, respectively.


Assuntos
Geobacillus/metabolismo , Fontes Termais/microbiologia , Polissacarídeos Bacterianos/biossíntese , Armênia , Carbono/metabolismo , Frutose/metabolismo , Geobacillus/genética , Geobacillus/isolamento & purificação , Microbiologia Industrial/métodos , Polissacarídeos Bacterianos/química , RNA Ribossômico 16S/genética
5.
Extremophiles ; 22(6): 931-941, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30120597

RESUMO

Spores of the genus Bacillus are able to resist ionizing radiations and therefore they are a suitable biological model for studies in Astrobiology, i.e. the multidisciplinary approach to the study of the origin and evolution of life on Earth and in the universe. The resistance to γ-radiation is an important issue in Astrobiology in relation to the search for bacterial species that could adapt to life in space. This study investigates the resistance of spores of the thermophilic bacteria Parageobacillus thermantarcticus to γ-rays. The analysis of spores' response to irradiation at a molecular level is performed by means of Raman spectroscopy that allows to get insights in the sequence of events taking place during inactivation. The role of the γ-rays' dose in the inactivation of spores is also investigated, allowing to highlight the mechanism(s) of inactivation including DNA damage, protein denaturation and calcium dipicolinate levels.


Assuntos
Bacillaceae/efeitos da radiação , Tolerância a Radiação , Esporos Bacterianos/efeitos da radiação , Raios gama
6.
Appl Microbiol Biotechnol ; 102(11): 4937-4949, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29616312

RESUMO

Halophilic microorganisms are producers of a lot of new compounds whose properties suggest promising perspectives for their biotechnological exploration. Moderate halophilic bacterium Chromohalobacter canadensis 28 was isolated from Pomorie salterns as an extracellular polymer substance (EP) producer. The best carbon source for extracellular polymer production was found to be lactose, a sugar received as a by-product from the dairy industry. After optimization of the culture medium and physicochemical conditions for cultivation, polymer biosynthesis increased more than 2-fold. The highest level of extracellular polymer synthesis by C. canadensis 28 was observed in an unusually high NaCl concentration (15% w/v). Chemical analysis of the purified polymer revealed the presence of an exopolysaccharide (EPS) fraction (14.3% w/w) and protein fraction (72% w/w). HPLC analysis of the protein fraction showed the main presence of polyglutamic acid (PGA) (75.7% w/w). EPS fraction analysis revealed the following sugar composition (% w/w): glucosamine 36.7, glucose 32.3, rhamnose 25.4, xylose 1.7, and not identified sugar 3.9. The hydrogel formed by PGA and EPS fractions showed high swelling behavior, very good emulsifying and stabilizing properties, and good foaming ability. This is the first report for halophilic bacterium able to synthesize a polymer containing PGA fraction. The synthesized biopolymer shows an extremely high hydrophilicity, due to the simultaneous presence of PGA and EPS. The analysis of its functional properties and the presence of glucosamine in the highest proportion in EPS fraction clearly determine the potential of EP synthesized by C. canadensis 28 for application in the cosmetics industry.


Assuntos
Chromohalobacter/metabolismo , Polímeros/metabolismo , Biotecnologia , Meios de Cultura , Espaço Extracelular/química , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química , Polissacarídeos Bacterianos/análise , Polissacarídeos Bacterianos/química
7.
Antonie Van Leeuwenhoek ; 111(7): 1105-1115, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29299771

RESUMO

Strain Corallo1T was isolated from mucus of red coral (Corallium rubrum) at Punta Pizzaco (Procida island, Naples, Italy). It was characterised as a Gram-stain negative, motile, rod-shaped bacterium. Strain Corallo1T was found to show positive responses for cytochrome-c oxidase, catalase, reduction of nitrate and nitrite, ß-galactosidase activity and hydrolysis of starch, xylan, peptone, Tween 40, Tween 80 and casein. Strain Corallo1T was found to be mesophilic, neutrophilic to alkalophilic and slightly halophilic. According to analysis of the almost-complete 16S rRNA gene, strain Corallo1T is closely related to Vibrio celticus (100% sequence similarity), Vibrio gigantis (100%), Vibrio crassostreae (99.7%), Vibrio artabrorum (99.7%) and Vibrio pomeroyi (99.6%). MLSA of five housekeeping genes (atpA, pyrH, recA, rpoA and rpoD) was performed to refine the phylogenetic relationships of strain Corallo1T. A draft genome sequence of strain Corallo1T was obtained. The DNA G+C content of this strain was determined to be 44.5 mol %. The major cellular fatty acids of strain Corallo1T are C16:1, n-C16:0 and C18:1, and the major isoprenoid ubiquinone is Q8. ANI indexes, in silico estimations of DDH values and wet lab DDH values demonstrated that strain Corallo1T represents an independent genomospecies. Based on a polyphasic taxonomic characterisation, strain Corallo1T is concluded to represent a novel species of the genus Vibrio, for which the name Vibrio coralliirubri sp. nov. is proposed. The type strain is Corallo1T (= DSM 27495T = CIP 110630T).


Assuntos
Antozoários/microbiologia , Vibrio/isolamento & purificação , Animais , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Itália , Muco/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Vibrio/classificação , Vibrio/genética , Vibrio/metabolismo
8.
Orig Life Evol Biosph ; 48(1): 141-158, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28593333

RESUMO

Astrobiology studies the origin and evolution of life on Earth and in the universe. According to the panspermia theory, life on Earth could have emerged from bacterial species transported by meteorites, that were able to adapt and proliferate on our planet. Therefore, the study of extremophiles, i.e. bacterial species able to live in extreme terrestrial environments, can be relevant to Astrobiology studies. In this work we described the ability of the thermophilic species Geobacillus thermantarcticus to survive after exposition to simulated spatial conditions including temperature's variation, desiccation, X-rays and UVC irradiation. The response to the exposition to the space conditions was assessed at a molecular level by studying the changes in the morphology, the lipid and protein patterns, the nucleic acids. G. thermantarcticus survived to the exposition to all the stressing conditions examined, since it was able to restart cellular growth in comparable levels to control experiments carried out in the optimal growth conditions. Survival was elicited by changing proteins and lipids distribution, and by protecting the DNA's integrity.


Assuntos
Dessecação , Geobacillus/fisiologia , Temperatura Alta , Simulação de Ambiente Espacial , Raios Ultravioleta , Raios X , Geobacillus/efeitos da radiação
9.
Int J Syst Evol Microbiol ; 67(11): 4830-4835, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28984237

RESUMO

A Gram-stain-positive, aerobic, endospore-forming, thermophilic bacterium, strain N.8T, was isolated from the curing step of an olive mill pomace compost sample, collected at the Composting Experimental Centre (CESCO, Salerno, Italy). Strain N.8T, based on 16S rRNA gene sequence similarities, was most closely related to Aeribacillus pallidus strain H12T (=DSM 3670T) (99.8 % similarity value) with a 25 % DNA-DNA relatedness value. Cells were rod-shaped, non-motile and grew optimally at 60 °C and pH 9.0, forming cream colonies. Strain N.8 was able to grow on medium containing up to 9.0 % (w/v) NaCl with an optimum at 6.0 % (w/v) NaCl. The cellular membrane contained MK-7, and C16 : 0 (48.4 %), iso-C17 : 0 (19.4 %) and anteiso-C17 : 0 (14.6 %) were the major cellular fatty acids. The DNA G+C content was 40.5 mol%. Based on phenotypic characteristics, 16S rRNA gene sequences, DNA-DNA hybridization values and chemotaxonomic characteristics, strain N.8T represents a novel species of the genus Aeribacillus, for which the name Aeribacillus composti sp. nov. is proposed. The type strain is N.8T (=KCTC 33824T=JCM 31580T).


Assuntos
Bacillaceae/classificação , Compostagem , Olea/microbiologia , Filogenia , Bacillaceae/genética , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Itália , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
10.
Appl Microbiol Biotechnol ; 101(20): 7487-7496, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28879435

RESUMO

Herpes simplex virus type 1 (HSV-1) is responsible of common and widespread viral infections in humans through the world, and of rare, but extremely severe, clinical syndromes in the central nervous system. The emergence of resistant strains to drugs actually in use encourages the searching for novel antiviral compounds, including those of natural origin. In this study, the recently described poly-γ-glutamic acid (γ-PGA-APA), produced by the marine thermotolerant Bacillus horneckiae strain APA, and previously shown to possess biological and antiviral activity, was evaluated for its anti-HSV-1 and immunomodulatory properties. The biopolymer hindered the HSV-1 infection in the very early phase of virus replication. In addition, the γ-PGA-APA was shown to exert low cytotoxicity and noticeable immunomodulatory activities towards TNF-α and IL-1ß gene expression. Moreover, the capacity to positively modulate the transcriptional activity of the cytokine genes was paired with increased level of activation of the transcription factor NF-kB by γ-PGA-APA. Overall, as non-cytotoxic biopolymer able to contribute in the antiviral defense against HSV-1, γ-PGA-APA could lead to the development of novel natural drugs for alternative therapies.


Assuntos
Antivirais/farmacologia , Bacillus/metabolismo , Citocinas/biossíntese , Herpesvirus Humano 1/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Ácido Poliglutâmico/análogos & derivados , Replicação Viral/efeitos dos fármacos , Antivirais/isolamento & purificação , Bacillus/isolamento & purificação , Expressão Gênica/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Fatores Imunológicos/isolamento & purificação , NF-kappa B/metabolismo , Ácido Poliglutâmico/isolamento & purificação , Ácido Poliglutâmico/farmacologia , Transcrição Gênica/efeitos dos fármacos
11.
J Sci Food Agric ; 97(15): 5241-5246, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28474355

RESUMO

BACKGROUND: The antioxidant properties and bioactive compound contents of fresh new tomato hybrids before and after in vitro digestion were investigated. To this aim, the antioxidant activities of lipophilic, hydrophilic and polyphenolic extracts of tomato hybrids were determined by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), DMPD (N,N-dimethyl-p-phenylenediamine dihydrochloride) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods respectively, while the bioactive compound contents were estimated via Folin-Ciocalteu (polyphenols), pH differential (anthocyanins) and high-performance liquid chromatography (lycopene and ß-carotene) methods. RESULTS: After the digestion process, a marked loss (ranging from 37 to 77%) of antioxidant capacity linked to the hydrophilic fraction was observed. In contrast, the lipophilic and methanolic fractions showed an increase in antioxidant activity (ranging from 9 to 40%) after gastric digestion, and a rapid decrease was observed after total digestion. Moreover, the presence of anthocyanins and carotenoids after simulated digestion was a notable result. CONCLUSION: The bioavailability of bioactive metabolites from nutraceutical food and their healthful properties in humans are strictly dependent on the digestion process. © 2017 Society of Chemical Industry.


Assuntos
Antioxidantes/análise , Extratos Vegetais/análise , Solanum lycopersicum/química , Antocianinas/análise , Antocianinas/metabolismo , Digestão , Frutas/química , Frutas/metabolismo , Humanos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Extratos Vegetais/metabolismo , Polifenóis/análise , Polifenóis/metabolismo , beta Caroteno/análise , beta Caroteno/metabolismo
12.
Int J Syst Evol Microbiol ; 66(3): 1554-1560, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26813578

RESUMO

A Gram-stain-positive, non-endospore-forming, haloalkaliphilic actinobacterium, strain CK5T, was isolated from a soil sample, collected at Cape King (Antarctica), and its taxonomic position was investigated by using a polyphasic approach. Cells were cocci with orange pigmentation, non-motile and grew optimally at 25 °C and pH 9.0-9.5 in the presence of 2 % (w/v) NaCl. Cellular membrane contained MK-7 (72 %) and MK-8 (28 %), and anteiso-C15 : 0 (64.8 %), iso-C16 : 0 (13.3 %), n-C17 : 0 (9.9 %), n-C16 : 0 (4.0 %), n-C14 : 0 (3.7 %) as major cellular fatty acids. The DNA G+C content was 64.8 mol%. Strain CK5T, based on the 16S rRNA gene sequence similarity, was most closely related to Nesterenkonia jeotgali JG-241T (99.5 %), Nesterenkonia sandarakina YIM 70009T (99.4 %), Nesterenkonia lutea YIM 70081T (99.4 %), Nesterenkonia halotolerans YIM 70084T (99.3 %), Nesterenkonia xinjiangensis YIM 70097T (97.2 %), Nesterenkonia flava CAAS 251T (97.1 %) and Nesterekonia aethiopica CCUG 48939T (97.1 %). Strain CK5T revealed 31 % DNA-DNA relatedness with respect to N. sandarakina DSM 15664T, 29 % with respect to N. jeotgali DSM 19081T, 10 % with respect to N. lutea DSM 15666T and 1 % with respect to N. halotolerans, DSM 15474T, N. xinjiangensis DSM 15475T, N. aethiopica DSM 17733T and N. flava DSM 19422T. On the basis of 16S rRNA gene sequences, DNA-DNA hybridization and chemotaxonomic characteristics, strain CK5T represents a novel species of the genus Nesterenkonia, for which the name Nesterenkonia aurantiaca sp. nov. is proposed. The type strain is CK5T ( = DSM 27373T = JCM 19723T).

13.
Extremophiles ; 20(5): 687-94, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27329160

RESUMO

Halomonas pantelleriensis DSM9661(Τ) is a Gram-negative haloalkaliphilic bacterium isolated from the sand of the volcanic Venus mirror lake, closed to seashore in the Pantelleria Island in the south of Italy. It is able to optimally grow in media containing 3-15 % (w/v) total salt and at pH between 9 and 10. To survive in these harsh conditions, the bacterium has developed several strategies that probably concern the bacteria outer membrane, a barrier regulating the exchange with the environment. In such a context, the lipopolysaccharides (LPSs), which are among the major constituent of the Gram-negative outer membrane, are thought to contribute to the restrictive membrane permeability properties. The structure of the lipid A family derived from the LPS of Halomonas pantelleriensis DSM 9661(T) is reported herein. The lipid A was obtained from the purified LPS by mild acid hydrolysis. The lipid A, which contains different numbers of fatty acids residues, and its partially deacylated derivatives were completely characterized by means of ESI FT-ICR mass spectrometry and chemical analysis. Preliminary immunological assays were performed, and a comparison with the lipid A structure of the phylogenetic proximal Halomonas magadiensis is also reported.


Assuntos
Halomonas/química , Lipídeo A/química , Linhagem Celular Tumoral , Halomonas/imunologia , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Lipídeo A/imunologia
14.
Mar Drugs ; 12(5): 3005-24, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24857960

RESUMO

In the last decades, research has focused on the capabilities of microbes to secrete exopolysaccharides (EPS), because these polymers differ from the commercial ones derived essentially from plants or algae in their numerous valuable qualities. These biopolymers have emerged as new polymeric materials with novel and unique physical characteristics that have found extensive applications. In marine microorganisms the produced EPS provide an instrument to survive in adverse conditions: They are found to envelope the cells by allowing the entrapment of nutrients or the adhesion to solid substrates. Even if the processes of synthesis and release of exopolysaccharides request high-energy investments for the bacterium, these biopolymers permit resistance under extreme environmental conditions. Marine bacteria like Bacillus, Halomonas, Planococcus, Enterobacter, Alteromonas, Pseudoalteromonas, Vibrio, Rhodococcus, Zoogloea but also Archaea as Haloferax and Thermococcus are here described as EPS producers underlining biopolymer hyperproduction, related fermentation strategies including the effects of the chemical composition of the media, the physical parameters of the growth conditions and the genetic and predicted experimental design tools.


Assuntos
Bactérias/metabolismo , Fermentação , Polissacarídeos/genética , Microbiologia da Água , Bactérias/genética , Polissacarídeos/biossíntese
15.
Int J Syst Evol Microbiol ; 63(Pt 1): 10-18, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22328606

RESUMO

Four Gram-negative, moderately halophilic, exopolysaccharide-producing strains, designated AAD6(T), AAD4, AAD17 and AAD21, were isolated from Çamalti Saltern Area, a wildlife reserve in Sasali, Izmir province located in the Aegean Region of Turkey. The isolates grew at an optimum NaCl concentration of 10% (w/v). The major cellular fatty acids were C(16:0), C(18:1)ω7c, C(16:1)ω7c and C(12:0) 3OH, respectively and the predominant lipoquinone was ubiquinone Q-9. The G+C content of the genomic DNA of strains AAD6(T), AAD4, AAD17 and AAD21 was 63.0, 63.3, 62.8 and 62.6 mol %, respectively. Comparative 16S rRNA gene sequence studies showed that the isolates belonged to the genus Halomonas. The DNA-DNA hybridization mean values between the representative strain AAD6(T) and the closely related species Halomonas salina DSM 5928(T), Halomonas halophila DSM 4770(T), Halomonas maura DSM 13445(T), Halomonas organivorans DSM 16226(T), Halomonas elongata DSM 2581(T), Halomonas koreensis JCM 12237(T) and Halomonas nitroreducens LMG 24185, were 40.8, 39.6, 24.2, 23.3, 12.6, 14.5 and 12.2%, respectively. Based on these data the strains represent a novel species of the genus Halomonas for which the name Halomonas smyrnensis sp. nov. is proposed. The type strain is AAD6(T) (= DSM 21644(T) = JCM 15723(T)).


Assuntos
Halomonas/classificação , Filogenia , Polissacarídeos Bacterianos/biossíntese , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Halomonas/genética , Halomonas/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Lagoas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Turquia , Ubiquinona/análise
16.
Curr Microbiol ; 67(1): 21-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23397221

RESUMO

A haloalkaliphilic, thermophilic Bacillus strain (T14), isolated from a shallow hydrothermal vent of Panarea Island (Italy), produced a new exopolysaccharide (EPS). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain T14 was highly related (99 % similarity) to Bacillus licheniformis DSM 13(T) and Bacillus sonorensis DSM 13779(T). Further DNA-DNA hybridization analysis revealed 79.40 % similarity with B. licheniformis DSM 13(T) and 39.12 % with B. sonorensis DSM 13779(T). Sucrose (5 %) was the most efficient carbon source for growth and EPS production. The highest EPS production (366 mg l(-1)) was yielded in fermenter culture at 300 rpm after 48 h of incubation. The purified fraction EPS1 contained fructose/fucose/glucose/galactosamine/mannose in a relative proportion of 1.0:0.75:0.28:tr:tr and possessed a molecular weight of 1,000 kDa displaying a trisaccharide unit constituted by sugars with a ß-manno-pyranosidic configuration. Screening for biological activity showed anti-cytotoxic effect of EPS1 against Avarol in brine shrimp test, indicating a potential use in the development of novel drugs.


Assuntos
Bacillus/classificação , Bacillus/isolamento & purificação , Fontes Hidrotermais/microbiologia , Polissacarídeos Bacterianos/metabolismo , Animais , Artemia , Bacillus/genética , Bacillus/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ilhas , Itália , Dados de Sequência Molecular , Peso Molecular , Hibridização de Ácido Nucleico , Filogenia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sacarose/metabolismo
17.
Mar Drugs ; 11(1): 184-93, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23337252

RESUMO

Lipid A is a major constituent of the lipopolysaccharides (or endotoxins), which are complex amphiphilic macromolecules anchored in the outer membrane of Gram-negative bacteria. The glycolipid lipid A is known to possess the minimal chemical structure for LPSs endotoxic activity, able to cause septic shock. Lipid A isolated from extremophiles is interesting, since very few cases of pathogenic bacteria have been found among these microorganisms. In some cases their lipid A has shown to have an antagonist activity, i.e., it is able to interact with the immune system of the host without triggering a proinflammatory response by blocking binding of substances that could elicit such a response. However, the relationship between the structure and the activity of these molecules is far from being completely clear. A deeper knowledge of the lipid A chemical structure can help the understanding of these mechanisms. In this manuscript, we present our work on the complete structural characterization of the lipid A obtained from the lipopolysaccharides (LPS) of the haloalkaliphilic bacterium Salinivibrio sharmensis. Lipid A was obtained from the purified LPS by mild acid hydrolysis. The lipid A, which contains different number of fatty acids residues, and its partially deacylated derivatives were completely characterized by means of electrospray ionization Fourier transform ion cyclotron (ESI FT-ICR) mass spectrometry and chemical analysis.


Assuntos
Bactérias Gram-Negativas/química , Lipídeo A/química , Lipopolissacarídeos/química , Ácidos/química , Ciclotrons , Ácidos Graxos/química , Análise de Fourier , Hidrólise , Íons/química , Espectrometria de Massas por Ionização por Electrospray/métodos
18.
Anaerobe ; 18(3): 280-5, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22710413

RESUMO

The viability of the probiotic strain Lactobacillus acidophilus DSM 20079, after its passage through the simulated gastric and pancreatic juices, was evaluated as function of its pre-growth in a medium containing the known prebiotics pectin or inulin, and was compared to glucose used as control. The presence of pectin or inulin did not affect the growth (12.11(log10) colony forming units/mL and 12.08(log10) colony forming units/mL for pectin and inulin respectively versus 12.22(log10) colony forming units/mL obtained for glucose). Pectin and inulin, in contrast to glucose, induced cell stress resistance against gastrointestinal juices (Δ(log10) 1 and 2 colony forming units/mL respectively, versus Δ(log10) 4.5 for glucose). The data were confirmed by the analysis of the protein pattern following stress treatments which, in the case of microbial cells grown with glucose, revealed a relevant protein degradation after the double passage through simulated gastric and intestinal juices. An impressive metabolic change, as function of the growth conditions, was demonstrated by analyzing the proteomic profile with a µ-2DE system, used herein for the first time as evaluation tool of prebiotic-probiotic interactions. The analysis revealed a different pH protein distribution that was mostly acidic in the presence of pectin and neutral-alkaline in the presence of inulin. Both prebiotics stimulated the production of butyrate, a relevant healthy bio-molecule not detectable in the presence of glucose, that was measured by HPLC analysis to be 14.5 fold higher after growth in the presence of inulin, as compared to pectin. Three specific proteins were detected at pH 6 after growth in the presence of pectin or inulin. They could be correlated to the stress resistance and/or to the production of butyrate, the common phenotypic characteristics induced in the bacterial strain by the two prebiotics.


Assuntos
Trato Gastrointestinal/fisiologia , Lactobacillus acidophilus/crescimento & desenvolvimento , Viabilidade Microbiana , Probióticos , Ácido Acético/metabolismo , Proteínas de Bactérias/metabolismo , Ácido Butírico/metabolismo , Meios de Cultura , Eletroforese em Gel Bidimensional , Ácidos Graxos/metabolismo , Suco Gástrico/fisiologia , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Secreções Intestinais/fisiologia , Inulina/metabolismo , Ácido Láctico/metabolismo , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/fisiologia , Pectinas/metabolismo , Proteoma/metabolismo
19.
World J Microbiol Biotechnol ; 28(1): 155-63, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22806791

RESUMO

Bioaccumulation and heavy metal resistance of Cd(2+), Cu(2+), Ni(2+), Zn(2+) and Mn(2+) ions by thermophilic Geobacillus toebii subsp. decanicus and Geobacillus thermoleovorans subsp. stromboliensis were investigated. The metal resistance from the most resistant to the most sensitive was found as Mn > Ni > Cu > Zn > Cd for both Geobacillus thermoleovorans subsp. stromboliensis and Geobacillus toebii subsp. decanicus. It was determined that the highest metal bioaccumulation was performed by Geobacillus toebii subsp. decanicus for Zn (36,496 µg/g dry weight cell), and the lowest metal bioaccumulation was performed by Geobacillus toebii subsp. decanicus for Ni (660.3 µg/g dry weight cell). Moreover, the dead cells were found to biosorbe more metal in their membranes compared to the live cells. In the presence of 7.32 mg/l Cd concentration, the levels of Cd absorbed in live and dead cell membranes were found as 17.44 and 46.2 mg/g membrane, respectively.


Assuntos
Geobacillus/efeitos dos fármacos , Geobacillus/metabolismo , Metais Pesados/farmacocinética , Metais Pesados/toxicidade , Biodegradação Ambiental , Cádmio/farmacocinética , Cádmio/toxicidade , Cobre/farmacocinética , Cobre/toxicidade , Farmacorresistência Bacteriana , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Geobacillus/crescimento & desenvolvimento , Manganês/farmacocinética , Manganês/toxicidade , Testes de Sensibilidade Microbiana , Níquel/farmacocinética , Níquel/toxicidade , Especificidade da Espécie , Zinco/farmacocinética , Zinco/toxicidade
20.
Front Microbiol ; 13: 923038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756030

RESUMO

Parageobacillus thermantarcticus strain M1 is a Gram-positive, motile, facultative anaerobic, spore forming, and thermophilic bacterium, isolated from geothermal soil of the crater of Mount Melbourne (74°22' S, 164°40' E) during the Italian Antarctic Expedition occurred in Austral summer 1986-1987. Strain M1 demonstrated great biotechnological and industrial potential owing to its ability to produce exopolysaccharides (EPSs), ethanol and thermostable extracellular enzymes, such as an xylanase and a ß-xylosidase, and intracellular ones, such as xylose/glucose isomerase and protease. Furthermore, recent studies revealed its high potential in green chemistry due to its use in residual biomass transformation/valorization and as an appropriate model for microbial astrobiology studies. In the present study, using a systems-based approach, genomic analysis of P. thermantarcticus M1 was carried out to enlighten its functional characteristics. The elucidation of whole-genome organization of this thermophilic cell factory increased our understanding of biological mechanisms and pathways, by providing valuable information on the essential genes related to the biosynthesis of nucleotide sugar precursors, monosaccharide unit assembly, as well as the production of EPSs and ethanol. In addition, gene prediction and genome annotation studies identified genes encoding xylanolytic enzymes that are required for the conversion of lignocellulosic materials to high-value added molecules. Our findings pointed out the significant potential of strain M1 in various biotechnological and industrial applications considering its capacity to produce EPSs, ethanol and thermostable enzymes via the utilization of lignocellulosic waste materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA