Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 555(7698): 673-677, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29562231

RESUMO

Obesity-induced metabolic disease involves functional integration among several organs via circulating factors, but little is known about crosstalk between liver and visceral adipose tissue (VAT). In obesity, VAT becomes populated with inflammatory adipose tissue macrophages (ATMs). In obese humans, there is a close correlation between adipose tissue inflammation and insulin resistance, and in obese mice, blocking systemic or ATM inflammation improves insulin sensitivity. However, processes that promote pathological adipose tissue inflammation in obesity are incompletely understood. Here we show that obesity in mice stimulates hepatocytes to synthesize and secrete dipeptidyl peptidase 4 (DPP4), which acts with plasma factor Xa to inflame ATMs. Silencing expression of DPP4 in hepatocytes suppresses inflammation of VAT and insulin resistance; however, a similar effect is not seen with the orally administered DPP4 inhibitor sitagliptin. Inflammation and insulin resistance are also suppressed by silencing expression of caveolin-1 or PAR2 in ATMs; these proteins mediate the actions of DPP4 and factor Xa, respectively. Thus, hepatocyte DPP4 promotes VAT inflammation and insulin resistance in obesity, and targeting this pathway may have metabolic benefits that are distinct from those observed with oral DPP4 inhibitors.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Hepatócitos/metabolismo , Inflamação/enzimologia , Resistência à Insulina , Gordura Intra-Abdominal/patologia , Obesidade/enzimologia , Administração Oral , Animais , Caveolina 1/deficiência , Caveolina 1/genética , Caveolina 1/metabolismo , Dipeptidil Peptidase 4/deficiência , Dipeptidil Peptidase 4/genética , Fator Xa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Resistência à Insulina/genética , Gordura Intra-Abdominal/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo , Receptor PAR-2/deficiência , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Fosfato de Sitagliptina/administração & dosagem , Fosfato de Sitagliptina/farmacologia
2.
J Immunol ; 202(8): 2451-2459, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30850480

RESUMO

Macrophages, B cells, and adipocytes are among the adipose tissue (AT) APCs that differentiate and activate naive CD4+ T cells. Mice with adipocyte loss of MHC class II (MHC II) are more insulin sensitive. Because macrophages are professional APCs, mice with genetic myeloid MHC II depletion (myeloid MHC II knockout [mMHCII-/-]) were created and metabolically characterized. FITC+ glucan-coated particles (glucan-encapsulated small interfering RNA [siRNA] particles [GeRPs]) were also used to target MHC II knockout specifically in AT macrophages (ATMs). Mice with total body mMHCII-/- were generated by crossing LyzMCre with H2Ab1 floxed mice. For specific ATM depletion of H2Ab1, GeRPs containing H2Ab1 siRNA were administered to high-fat diet-fed C57BL/6 mice. Unexpectedly, mMHCII-/- mice had loss of both macrophage and adipocyte H2Ab1, one of only two Ag-presenting arms; thus, neither cell could present Ag and activate CD4+ T cells. This inability led to a reduction in AT immunosuppressive regulatory T cells, increased AT CD8+ T cells, and no improvement in systemic metabolism. Thus, with combined systemic myeloid and adipocyte MHC II loss, the impact of ATM-specific alterations in APC activity could not be delineated. Therefore, GeRPs containing H2Ab1 siRNA were administered to specifically reduce ATM H2Ab1 which, in contrast, revealed improved glucose tolerance. In conclusion, loss of either ATM or adipocyte APC function, but not both, improves systemic glucose metabolism because of maintenance of AT regulatory T cells.


Assuntos
Adipócitos/imunologia , Tecido Adiposo/imunologia , Apresentação de Antígeno , Glucose/imunologia , Macrófagos/imunologia , Adipócitos/citologia , Tecido Adiposo/citologia , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Glucose/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Macrófagos/citologia , Camundongos , Camundongos Knockout
3.
J Biol Chem ; 293(44): 17291-17305, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30190322

RESUMO

RNA-guided, engineered nucleases derived from the prokaryotic adaptive immune system CRISPR-Cas represent a powerful platform for gene deletion and editing. When used as a therapeutic approach, direct delivery of Cas9 protein and single-guide RNA (sgRNA) could circumvent the safety issues associated with plasmid delivery and therefore represents an attractive tool for precision genome engineering. Gene deletion or editing in adipose tissue to enhance its energy expenditure, fatty acid oxidation, and secretion of bioactive factors through a "browning" process presents a potential therapeutic strategy to alleviate metabolic disease. Here, we developed "CRISPR-delivery particles," denoted CriPs, composed of nano-size complexes of Cas9 protein and sgRNA that are coated with an amphipathic peptide called Endo-Porter that mediates entry into cells. Efficient CRISPR-Cas9-mediated gene deletion of ectopically expressed GFP by CriPs was achieved in multiple cell types, including a macrophage cell line, primary macrophages, and primary pre-adipocytes. Significant GFP loss was also observed in peritoneal exudate cells with minimum systemic toxicity in GFP-expressing mice following intraperitoneal injection of CriPs containing Gfp-targeting sgRNA. Furthermore, disruption of a nuclear co-repressor of catabolism, the Nrip1 gene, in white adipocytes by CriPs enhanced adipocyte browning with a marked increase of uncoupling protein 1 (UCP1) expression. Of note, the CriP-mediated Nrip1 deletion did not produce detectable off-target effects. We conclude that CriPs offer an effective Cas9 and sgRNA delivery system for ablating targeted gene products in cultured cells and in vivo, providing a potential therapeutic strategy for metabolic disease.


Assuntos
Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Marcação de Genes/métodos , Proteína 1 de Interação com Receptor Nuclear/genética , Adipócitos/metabolismo , Tecido Adiposo Branco/citologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Genes Reporter , Humanos , Camundongos Endogâmicos C57BL , Proteína 1 de Interação com Receptor Nuclear/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
4.
Cardiovasc Diabetol ; 16(1): 87, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687077

RESUMO

BACKGROUND: Omentin-1, also known as Intelectin-1 (ITLN1), is an adipokine with plasma levels associated with diabetes, obesity, and coronary artery disease. Recent studies suggest that ITLN1 can mitigate myocardial ischemic injury but the expression of ITLN1 in the heart itself has not been well characterized. The purpose of this study is to discern the relationship between the expression pattern of ITLN1 RNA in the human heart and the level of circulating ITLN1 protein in plasma from the same patients following myocardial ischemia. METHODS: A large cohort of patients (n = 140) undergoing elective cardiac surgery for aortic valve replacement were enrolled in this study. Plasma and left ventricular biopsy samples were taken at the beginning of cardiopulmonary bypass and after an average of 82 min of ischemic cross clamp time. The localization of ITLN1 in epicardial adipose tissue (EAT) was also further characterized with immunoassays and cell fate transition studies. RESULTS: mRNA expression of ITLN1 decreases in left ventricular tissue after acute ischemia in human patients (mean difference 280.48, p = 0.001) whereas plasma protein levels of ITLN1 increase (mean difference 5.24, p < 0.001). Immunohistochemistry localized ITLN1 to the mesothelium or visceral pericardium of EAT. Epithelial to mesenchymal transition in mesothelial cells leads to a downregulation of ITLN1 expression. CONCLUSIONS: Myocardial injury leads to a decrease in ITLN1 expression in the heart and a corresponding increase in plasma levels. These changes may in part be due to an epithelial to mesenchymal transition of the cells that express ITLN1 following ischemia. Trial Registration Clinicaltrials.gov ID: NCT00985049.


Assuntos
Doença da Artéria Coronariana/metabolismo , Citocinas/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Lectinas/metabolismo , Isquemia Miocárdica/metabolismo , Pericárdio/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Valva Aórtica/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
5.
FASEB J ; 29(7): 2959-69, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25805830

RESUMO

Obesity promotes insulin resistance associated with liver inflammation, elevated glucose production, and type 2 diabetes. Although insulin resistance is attenuated in genetic mouse models that suppress systemic inflammation, it is not clear whether local resident macrophages in liver, denoted Kupffer cells (KCs), directly contribute to this syndrome. We addressed this question by selectively silencing the expression of the master regulator of inflammation, NF-κB, in KCs in obese mice. We used glucan-encapsulated small interfering RNA particles (GeRPs) that selectively silence gene expression in macrophages in vivo. Following intravenous injections, GeRPs containing siRNA against p65 of the NF-κB complex caused loss of NF-κB p65 expression in KCs without disrupting NF-κB in hepatocytes or macrophages in other tissues. Silencing of NF-κB expression in KCs in obese mice decreased cytokine secretion and improved insulin sensitivity and glucose tolerance without affecting hepatic lipid accumulation. Importantly, GeRPs had no detectable toxic effect. Thus, KCs are key contributors to hepatic insulin resistance in obesity and a potential therapeutic target for metabolic disease.


Assuntos
Resistência à Insulina/fisiologia , Células de Kupffer/metabolismo , Obesidade/metabolismo , Fator de Transcrição RelA/antagonistas & inibidores , Animais , Citocinas/metabolismo , Sistemas de Liberação de Medicamentos , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Inativação Gênica , Teste de Tolerância a Glucose , Humanos , Técnicas In Vitro , Injeções Intravenosas , Células de Kupffer/patologia , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/genética , Obesidade/patologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Fator de Transcrição RelA/genética
6.
Mol Pharm ; 13(3): 964-978, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26815386

RESUMO

Translation of siRNA technology into the clinic is limited by the need for improved delivery systems that target specific cell types. Macrophages are particularly attractive targets for RNAi therapy because they promote pathogenic inflammatory responses in a number of important human diseases. We previously demonstrated that a multicomponent formulation of ß-1,3-d-glucan-encapsulated siRNA particles (GeRPs) can specifically and potently silence genes in mouse macrophages. A major advance would be to simplify the GeRP system by reducing the number of delivery components, thus enabling more facile manufacturing and future commercialization. Here we report the synthesis and evaluation of a simplified glucan-based particle (GP) capable of delivering siRNA in vivo to selectively silence macrophage genes. Covalent attachment of small-molecule amines and short peptides containing weak bases to GPs facilitated electrostatic interaction of the particles with siRNA and aided in the endosomal release of siRNA by the proton-sponge effect. Modified GPs were nontoxic and were efficiently internalized by macrophages in vitro. When injected intraperitoneally (i.p.), several of the new peptide-modified GPs were found to efficiently deliver siRNA to peritoneal macrophages in lean, healthy mice. In an animal model of obesity-induced inflammation, i.p. administration of one of the peptide-modified GPs (GP-EP14) bound to siRNA selectively reduced the expression of target inflammatory cytokines in the visceral adipose tissue macrophages. Decreasing adipose tissue inflammation resulted in an improvement of glucose metabolism in these metabolically challenged animals. Thus, modified GPs represent a promising new simplified system for the efficient delivery of therapeutic siRNAs specifically to phagocytic cells in vivo for modulation of inflammation responses.


Assuntos
Aminas/química , Sistemas de Liberação de Medicamentos , Terapia Genética , Macrófagos Peritoneais/efeitos dos fármacos , Osteopontina/antagonistas & inibidores , Fragmentos de Peptídeos/química , RNA Interferente Pequeno/administração & dosagem , beta-Glucanas/química , Animais , Células Cultivadas , Humanos , Inflamação/genética , Inflamação/terapia , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/terapia , Osteopontina/genética , Proteoglicanas , RNA Interferente Pequeno/genética
7.
Proc Natl Acad Sci U S A ; 110(20): 8278-83, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630254

RESUMO

Adipose tissue (AT) inflammation and infiltration by macrophages is associated with insulin resistance and type 2 diabetes in obese humans, offering a potential target for therapeutics. However, whether AT macrophages (ATMs) directly contribute to systemic glucose intolerance has not been determined. The reason is the lack of methods to ablate inflammatory genes expressed in macrophages specifically localized within AT depots, leaving macrophages in other tissues unaffected. Here we report that i.p. administration of siRNA encapsulated by glucan shells in obese mice selectively silences genes in epididymal ATMs, whereas macrophages within lung, spleen, kidney, heart, skeletal muscle, subcutaneous (SubQ) adipose, and liver are not targeted. Such administration of GeRPs to silence the inflammatory cytokines TNF-α or osteopontin in epididymal ATMs of obese mice caused significant improvement in glucose tolerance. These data are consistent with the hypothesis that cytokines produced by ATMs can exacerbate whole-body glucose intolerance.


Assuntos
Tecido Adiposo/citologia , Inativação Gênica , Intolerância à Glucose/metabolismo , Macrófagos/metabolismo , Obesidade/fisiopatologia , Animais , Citocinas/metabolismo , Epididimo/citologia , Epididimo/metabolismo , Intolerância à Glucose/genética , Inflamação , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Microscopia de Fluorescência , Osteopontina/metabolismo , Fagocitose , Interferência de RNA , RNA Interferente Pequeno , Fator de Necrose Tumoral alfa/metabolismo
8.
Nature ; 458(7242): 1180-4, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19407801

RESUMO

Gene silencing by double-stranded RNA, denoted RNA interference, represents a new paradigm for rational drug design. However, the transformative therapeutic potential of short interfering RNA (siRNA) has been stymied by a key obstacle-safe delivery to specified target cells in vivo. Macrophages are particularly attractive targets for RNA interference therapy because they promote pathogenic inflammatory responses in diseases such as rheumatoid arthritis, atherosclerosis, inflammatory bowel disease and diabetes. Here we report the engineering of beta1,3-D-glucan-encapsulated siRNA particles (GeRPs) as efficient oral delivery vehicles that potently silence genes in mouse macrophages in vitro and in vivo. Oral gavage of mice with GeRPs containing as little as 20 microg kg(-1) siRNA directed against tumour necrosis factor alpha (Tnf-alpha) depleted its messenger RNA in macrophages recovered from the peritoneum, spleen, liver and lung, and lowered serum Tnf-alpha levels. Screening with GeRPs for inflammation genes revealed that the mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) is a previously unknown mediator of cytokine expression. Importantly, silencing Map4k4 in macrophages in vivo protected mice from lipopolysaccharide-induced lethality by inhibiting Tnf-alpha and interleukin-1beta production. This technology defines a new strategy for oral delivery of siRNA to attenuate inflammatory responses in human disease.


Assuntos
Sistemas de Liberação de Medicamentos , Inativação Gênica , Inflamação/prevenção & controle , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/administração & dosagem , Administração Oral , Animais , Ativação Enzimática/efeitos dos fármacos , Glucanos/metabolismo , Inflamação/genética , Interleucina-1beta/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Especificidade de Órgãos , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Especificidade por Substrato , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinase Induzida por NF-kappaB
9.
Am J Physiol Endocrinol Metab ; 307(4): E374-83, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24986598

RESUMO

Proinflammatory pathways in adipose tissue macrophages (ATMs) can impair glucose tolerance in obesity, but ATMs may also be beneficial as repositories for excess lipid that adipocytes are unable to store. To test this hypothesis, we selectively targeted visceral ATMs in obese mice with siRNA against lipoprotein lipase (LPL), leaving macrophages within other organs unaffected. Selective silencing of ATM LPL decreased foam cell formation in visceral adipose tissue of obese mice, consistent with a reduced supply of fatty acids from VLDL hydrolysis. Unexpectedly, silencing LPL also decreased the expression of genes involved in fatty acid uptake (CD36) and esterification in ATMs. This deficit in fatty acid uptake capacity was associated with increased circulating serum free fatty acids. Importantly, ATM LPL silencing also caused a marked increase in circulating fatty acid-binding protein-4, an adipocyte-derived lipid chaperone previously reported to induce liver insulin resistance and glucose intolerance. Consistent with this concept, obese mice with LPL-depleted ATMs exhibited higher hepatic glucose production from pyruvate and glucose intolerance. Silencing CD36 in ATMs also promoted glucose intolerance. Taken together, the data indicate that LPL secreted by ATMs enhances their ability to sequester excess lipid in obese mice, promoting systemic glucose tolerance.


Assuntos
Tecido Adiposo/metabolismo , Glicemia/metabolismo , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Células Cultivadas , Intolerância à Glucose/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipase Lipoproteica/antagonistas & inibidores , Lipase Lipoproteica/genética , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Obesidade/patologia , RNA Interferente Pequeno/farmacologia
10.
J Lipid Res ; 54(10): 2697-707, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23924694

RESUMO

Adipose tissue lipogenesis is paradoxically impaired in human obesity, promoting ectopic triglyceride (TG) deposition, lipotoxicity, and insulin resistance. We previously identified mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4), a sterile 20 protein kinase reported to be upstream of c-Jun NH2-terminal kinase (JNK) signaling, as a novel negative regulator of insulin-stimulated glucose transport in adipocytes. Using full-genome microarray analysis we uncovered a novel role for Map4k4 as a suppressor of lipid synthesis. We further report here the surprising finding that Map4k4 suppresses adipocyte lipogenesis independently of JNK. Thus, while Map4k4 silencing in adipocytes enhances the expression of lipogenic enzymes, concomitant with increased conversion of (14)C-glucose and (14)C-acetate into TGs and fatty acids, JNK1 and JNK2 depletion causes the opposite effects. Furthermore, high expression of Map4k4 fails to activate endogenous JNK, while Map4k4 depletion does not attenuate JNK activation by tumor necrosis factor α. Map4k4 silencing in cultured adipocytes elevates both the total protein expression and cleavage of sterol-regulated element binding protein-1 (Srebp-1) in a rapamycin-sensitive manner, consistent with Map4k4 signaling via mechanistic target of rapamycin complex 1 (mTORC1). We show Map4k4 depletion requires Srebp-1 upregulation to increase lipogenesis and further show that Map4k4 promotes AMP-protein kinase (AMPK) signaling and the phosphorylation of mTORC1 binding partner raptor (Ser792) to inhibit mTORC1. Our results indicate that Map4k4 inhibits adipose lipogenesis by suppression of Srebp-1 in an AMPK- and mTOR-dependent but JNK-independent mechanism.


Assuntos
Adipócitos/metabolismo , Lipogênese , Sistema de Sinalização das MAP Quinases , Proteínas Serina-Treonina Quinases/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ativação Enzimática , Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos , Obesidade/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Ativação Transcricional , Triglicerídeos/biossíntese , Quinase Induzida por NF-kappaB
11.
PNAS Nexus ; 2(12): pgad420, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130664

RESUMO

Adipocyte lipid droplets (LDs) play a crucial role in systemic lipid metabolism by storing and releasing lipids to meet the organism's energy needs. Hormonal signals such as catecholamines and insulin act on adipocyte LDs, and impaired responsiveness to these signals can lead to uncontrolled lipolysis, lipotoxicity, and metabolic disease. To investigate the mechanisms that control LD function in human adipocytes, we applied proximity labeling mediated by enhanced ascorbate peroxidase (APEX2) to identify the interactome of PLIN1 in adipocytes differentiated from human mesenchymal progenitor cells. We identified 70 proteins that interact specifically with PLIN1, including PNPLA2 and LIPE, which are the primary effectors of regulated triglyceride hydrolysis, and 4 members of the 14-3-3 protein family (YWHAB, YWHAE, YWHAZ, and YWHAG), which are known to regulate diverse signaling pathways. Functional studies showed that YWHAB is required for maximum cyclic adenosine monophosphate (cAMP)-stimulated lipolysis, as its CRISPR-Cas9-mediated knockout mitigates lipolysis through a mechanism independent of insulin signaling. These findings reveal a new regulatory mechanism operating in human adipocytes that can impact lipolysis and potentially systemic metabolism.

12.
Mol Metab ; 76: 101780, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482187

RESUMO

OBJECTIVES: Nuclear receptor interacting protein 1 (NRIP1) suppresses energy expenditure via repression of nuclear receptors, and its depletion markedly elevates uncoupled respiration in mouse and human adipocytes. We tested whether NRIP1 deficient adipocytes implanted into obese mice would enhance whole body metabolism. Since ß-adrenergic signaling through cAMP strongly promotes adipocyte thermogenesis, we tested whether the effects of NRIP1 knock-out (NRIP1KO) require the cAMP pathway. METHODS: NRIP1KO adipocytes were implanted in recipient high-fat diet (HFD) fed mice and metabolic cage studies conducted. The Nrip1 gene was disrupted by CRISPR in primary preadipocytes isolated from control vs adipose selective GsαKO (cAdGsαKO) mice prior to differentiation to adipocytes. Protein kinase A inhibitor was also used. RESULTS: Implanting NRIP1KO adipocytes into HFD fed mice enhanced whole-body glucose tolerance by increasing insulin sensitivity, reducing adiposity, and enhancing energy expenditure in the recipients. NRIP1 depletion in both control and GsαKO adipocytes was equally effective in upregulating uncoupling protein 1 (UCP1) and adipocyte beiging, while ß-adrenergic signaling by CL 316,243 was abolished in GsαKO adipocytes. Combining NRIP1KO with CL 316,243 treatment synergistically increased Ucp1 gene expression and increased the adipocyte subpopulation responsive to beiging. Estrogen-related receptor α (ERRα) was dispensable for UCP1 upregulation by NRIPKO. CONCLUSIONS: The thermogenic effect of NRIP1 depletion in adipocytes causes systemic enhancement of energy expenditure when such adipocytes are implanted into obese mice. Furthermore, NRIP1KO acts independently but cooperatively with the cAMP pathway in mediating its effect on adipocyte beiging.


Assuntos
Adipócitos , Transdução de Sinais , Camundongos , Humanos , Animais , Proteína 1 de Interação com Receptor Nuclear/metabolismo , Camundongos Obesos , Adipócitos/metabolismo , Obesidade/metabolismo , Termogênese/genética
13.
Circulation ; 123(2): 186-94, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21200001

RESUMO

BACKGROUND: Adipose tissue expands in response to excess caloric intake, but individuals prone to deposit visceral instead of subcutaneous adipose tissue have higher risk of metabolic disease. The role of angiogenesis in the expandability of human adipose tissue depots is unknown. The objective of this study was to measure angiogenesis in visceral and subcutaneous adipose tissue and to establish whether there is a relationship between obesity, metabolic status, and the angiogenic properties of these depots. METHODS AND RESULTS: Angiogenic capacity was determined by quantifying capillary branch formation from human adipose tissue explants embedded in Matrigel, and capillary density was assessed by immunohistochemistry. Subcutaneous adipose tissue had a greater angiogenic capacity than visceral tissue, even after normalization to its higher initial capillary density. Gene array analyses revealed significant differences in expression of angiogenic genes between depots, including an increased subcutaneous expression of angiopoietin-like protein 4, which is proangiogenic in an adipose tissue context. Subcutaneous capillary density and angiogenic capacity decreased with morbid obesity, and subcutaneous, but not visceral, adipose tissue angiogenic capacity correlated negatively with insulin sensitivity. CONCLUSIONS: These data imply that subcutaneous adipose tissue has a higher capacity to expand its capillary network than visceral tissue, but this capacity decreases with morbid obesity. The decrease correlates with insulin resistance, suggesting that impairment of subcutaneous adipose tissue angiogenesis may contribute to metabolic disease pathogenesis.


Assuntos
Gordura Intra-Abdominal/irrigação sanguínea , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Obesidade/fisiopatologia , Gordura Subcutânea/irrigação sanguínea , Adulto , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/metabolismo , Índice de Massa Corporal , Derivação Gástrica , Humanos , Resistência à Insulina/fisiologia , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/fisiopatologia , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/cirurgia , Gordura Subcutânea/metabolismo , Gordura Subcutânea/fisiopatologia
14.
Biochem J ; 436(2): 351-62, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21418037

RESUMO

Phagocytic macrophages and dendritic cells are desirable targets for potential RNAi (RNA interference) therapeutics because they often mediate pathogenic inflammation and autoimmune responses. We recently engineered a complex 5 component glucan-based encapsulation system for siRNA (small interfering RNA) delivery to phagocytes. In experiments designed to simplify this original formulation, we discovered that the amphipathic peptide Endo-Porter forms stable nanocomplexes with siRNA that can mediate potent gene silencing in multiple cell types. In order to restrict such gene silencing to phagocytes, a method was developed to entrap siRNA-Endo-Porter complexes in glucan shells of 2-4 µm diameter in the absence of other components. The resulting glucan particles containing fluorescently labelled siRNA were readily internalized by macrophages, but not other cell types, and released the labelled siRNA into the macrophage cytoplasm. Intraperitoneal administration of such glucan particles containing siRNA-Endo-Porter complexes to mice caused gene silencing specifically in macrophages that internalized the particles. These results from the present study indicate that specific targeting to phagocytes is mediated by the glucan, whereas Endo-Porter peptide serves both to anchor siRNA within glucan particles and to catalyse escape of siRNA from phagosomes. Thus we have developed a simplified siRNA delivery system that effectively and specifically targets phagocytes in culture or in intact mice.


Assuntos
Técnicas de Transferência de Genes , Fagócitos/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , beta-Glucanas/administração & dosagem , Células 3T3-L1 , Animais , Células COS , Chlorocebus aethiops , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Fagócitos/efeitos dos fármacos , Proteoglicanas , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
15.
J Biol Chem ; 285(36): 27581-9, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20587420

RESUMO

Protein kinase B/Akt protein kinases control an array of diverse functions, including cell growth, survival, proliferation, and metabolism. We report here the identification of pleckstrin homology-like domain family B member 1 (PHLDB1) as an insulin-responsive protein that enhances Akt activation. PHLDB1 contains a pleckstrin homology domain, which we show binds phosphatidylinositol PI(3,4)P(2), PI(3,5)P(2), and PI(3,4,5)P(3), as well as a Forkhead-associated domain and coiled coil regions. PHLDB1 expression is increased during adipocyte differentiation, and it is abundant in many mouse tissues. Both endogenous and HA- or GFP-tagged PHLDB1 displayed a cytoplasmic disposition in unstimulated cultured adipocytes but translocated to the plasma membrane in response to insulin. Depletion of PHLDB1 by siRNA inhibited insulin stimulation of Akt phosphorylation but not tyrosine phosphorylation of IRS-1. RNAi-based silencing of PHLDB1 in cultured adipocytes also attenuated insulin-stimulated deoxyglucose transport and Myc-GLUT4-EGFP translocation to the plasma membrane, whereas knockdown of the PHLDB1 isoform PHLDB2 failed to attenuate insulin-stimulated deoxyglucose transport. Furthermore, adenovirus-mediated expression of PHLDB1 in adipocytes enhanced insulin-stimulated Akt and p70 S6 kinase phosphorylation, as well as GLUT4 translocation. These results indicate that PHLDB1 is a novel modulator of Akt protein kinase activation by insulin.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células 3T3-L1 , Animais , Proteínas Sanguíneas/química , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Glucose/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoproteínas/química , Fosforilação/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Homologia de Sequência de Aminoácidos
16.
Proc Natl Acad Sci U S A ; 105(22): 7833-8, 2008 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-18509062

RESUMO

Storage of energy as triglyceride in large adipose-specific lipid droplets is a fundamental need in all mammals. Efficient sequestration of fat in adipocytes also prevents fatty acid overload in skeletal muscle and liver, which can impair insulin signaling. Here we report that the Cide domain-containing protein Cidea, previously thought to be a mitochondrial protein, colocalizes around lipid droplets with perilipin, a regulator of lipolysis. Cidea-GFP greatly enhances lipid droplet size when ectopically expressed in preadipocytes or COS cells. These results explain previous findings showing that depletion of Cidea with RNAi markedly elevates lipolysis in human adipocytes. Like perilipin, Cidea and the related lipid droplet protein Cidec/FSP27 are controlled by peroxisome proliferator-activated receptor gamma (PPARgamma). Treatment of lean or obese mice with the PPARgamma agonist rosiglitazone markedly up-regulates Cidea expression in white adipose tissue (WAT), increasing lipid deposition. Strikingly, in both omental and s.c. WAT from BMI-matched obese humans, expression of Cidea, Cidec/FSP27, and perilipin correlates positively with insulin sensitivity (HOMA-IR index). Thus, Cidea and other lipid droplet proteins define a novel, highly regulated pathway of triglyceride deposition in human WAT. The data support a model whereby failure of this pathway results in ectopic lipid accumulation, insulin resistance, and its associated comorbidities in humans.


Assuntos
Tecido Adiposo Branco/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Resistência à Insulina , Triglicerídeos/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo Branco/citologia , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/análise , Proteínas Reguladoras de Apoptose/genética , Índice de Massa Corporal , Proteínas de Transporte , Humanos , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Obesidade/metabolismo , PPAR gama/agonistas , PPAR gama/genética , PPAR gama/metabolismo , Perilipina-1 , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Rosiglitazona , Tiazolidinedionas/farmacologia
17.
Nat Commun ; 12(1): 6931, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836963

RESUMO

Obesity and type 2 diabetes are associated with disturbances in insulin-regulated glucose and lipid fluxes and severe comorbidities including cardiovascular disease and steatohepatitis. Whole body metabolism is regulated by lipid-storing white adipocytes as well as "brown" and "brite/beige" adipocytes that express thermogenic uncoupling protein 1 (UCP1) and secrete factors favorable to metabolic health. Implantation of brown fat into obese mice improves glucose tolerance, but translation to humans has been stymied by low abundance of primary human beige adipocytes. Here we apply methods to greatly expand human adipocyte progenitors from small samples of human subcutaneous adipose tissue and then disrupt the thermogenic suppressor gene NRIP1 by CRISPR. Ribonucleoprotein consisting of Cas9 and sgRNA delivered ex vivo are fully degraded by the human cells following high efficiency NRIP1 depletion without detectable off-target editing. Implantation of such CRISPR-enhanced human or mouse brown-like adipocytes into high fat diet fed mice decreases adiposity and liver triglycerides while enhancing glucose tolerance compared to implantation with unmodified adipocytes. These findings advance a therapeutic strategy to improve metabolic homeostasis through CRISPR-based genetic enhancement of human adipocytes without exposing the recipient to immunogenic Cas9 or delivery vectors.


Assuntos
Adipócitos Marrons/transplante , Sistemas CRISPR-Cas/genética , Intolerância à Glucose/terapia , Obesidade/terapia , Termogênese/genética , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Células-Tronco Adultas/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Edição de Genes/métodos , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Proteína 1 de Interação com Receptor Nuclear/genética , Proteína 1 de Interação com Receptor Nuclear/metabolismo , Obesidade/complicações , Obesidade/metabolismo , RNA Guia de Cinetoplastídeos/genética , Gordura Subcutânea/citologia
18.
Cell Rep ; 31(5): 107598, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375048

RESUMO

Here, we show that ß adrenergic signaling coordinately upregulates de novo lipogenesis (DNL) and thermogenesis in subcutaneous white adipose tissue (sWAT), and both effects are blocked in mice lacking the cAMP-generating G protein-coupled receptor Gs (Adipo-GsαKO) in adipocytes. However, UCP1 expression but not DNL activation requires rapamycin-sensitive mTORC1. Furthermore, ß3-adrenergic agonist CL316243 readily upregulates thermogenic but not lipogenic genes in cultured adipocytes, indicating that additional regulators must operate on DNL in sWAT in vivo. We identify one such factor as thyroid hormone T3, which is elevated locally by adrenergic signaling. T3 administration to wild-type mice enhances both thermogenesis and DNL in sWAT. Mechanistically, T3 action on UCP1 expression in sWAT depends upon cAMP and is blocked in Adipo-GsαKO mice even as elevated DNL persists. Thus, T3 enhances sWAT thermogenesis by amplifying cAMP signaling, while its control of adipocyte DNL can be mediated independently of both cAMP and rapamycin-sensitive mTORC1.


Assuntos
Adipócitos/metabolismo , Adrenérgicos/metabolismo , Termogênese/genética , Hormônios Tireóideos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Lipogênese/fisiologia , Camundongos Transgênicos , Transdução de Sinais/fisiologia
19.
J Clin Invest ; 116(1): 125-36, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16374519

RESUMO

Using an siRNA-based screen, we identified the transcriptional corepressor RIP140 as a negative regulator of insulin-responsive hexose uptake and oxidative metabolism in 3T3-L1 adipocytes. Affymetrix GeneChip profiling revealed that RIP140 depletion upregulates the expression of clusters of genes in the pathways of glucose uptake, glycolysis, TCA cycle, fatty acid oxidation, mitochondrial biogenesis, and oxidative phosphorylation in these cells. Conversely, we show that reexpression of RIP140 in mouse embryonic fibroblasts derived from RIP140-null mice downregulates expression of many of these same genes. Consistent with these microarray data, RIP140 gene silencing in cultured adipocytes increased both conversion of [14C]glucose to CO2 and mitochondrial oxygen consumption. RIP140-null mice, previously reported to resist weight gain on a high-fat diet, are shown here to display enhanced glucose tolerance and enhanced responsiveness to insulin compared with matched wild-type mice upon high-fat feeding. Mechanistically, RIP140 was found to require the nuclear receptor ERRalpha to regulate hexose uptake and mitochondrial proteins SDHB and CoxVb, although it likely acts through other nuclear receptors as well. We conclude that RIP140 is a major suppressor of adipocyte oxidative metabolism and mitochondrial biogenesis, as well as a negative regulator of whole-body glucose tolerance and energy expenditure in mice.


Assuntos
Adipócitos/metabolismo , Mitocôndrias/fisiologia , Proteínas Nucleares/metabolismo , Fosforilação Oxidativa , Células 3T3 , Proteínas Adaptadoras de Transdução de Sinal , Animais , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético , Glucose/metabolismo , Glicólise/fisiologia , Camundongos , Proteína 1 de Interação com Receptor Nuclear , Proteínas Repressoras/metabolismo
20.
J Clin Invest ; 114(9): 1281-9, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15520860

RESUMO

Adipose tissue plays a central role in the control of energy homeostasis through the storage and turnover of triglycerides and through the secretion of factors that affect satiety and fuel utilization. Agents that enhance insulin sensitivity, such as rosiglitazone, appear to exert their therapeutic effect through adipose tissue, but the precise mechanisms of their actions are unclear. Rosiglitazone changes the morphological features and protein profiles of mitochondria in 3T3-L1 adipocytes. To examine the relevance of these effects in vivo, we studied white adipocytes from ob/ob mice during the development of obesity and after treatment with rosiglitazone. The levels of approximately 50% of gene transcripts encoding mitochondrial proteins were decreased with the onset of obesity. About half of those genes were upregulated after treatment with rosiglitazone, and this was accompanied by an increase in mitochondrial mass and changes in mitochondrial structure. Functionally, adipocytes from rosiglitazone-treated mice displayed markedly enhanced oxygen consumption and significantly increased palmitate oxidation. These data reveal mitochondrial remodeling and increased energy expenditure in white fat in response to rosiglitazone treatment in vivo and suggest that enhanced lipid utilization in this tissue may affect whole-body energy homeostasis and insulin sensitivity.


Assuntos
Tecido Adiposo/patologia , Mitocôndrias/patologia , Tiazolidinedionas/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Glicemia/metabolismo , Northern Blotting , Western Blotting , Chaperonina 60/metabolismo , Ácidos Graxos/metabolismo , Insulina/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Obesidade , Análise de Sequência com Séries de Oligonucleotídeos , Oxigênio/metabolismo , PPAR gama/metabolismo , Ácido Palmítico/química , RNA Complementar/metabolismo , RNA Mensageiro/metabolismo , Rosiglitazona , Fatores de Tempo , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA