Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(21): 24363-24373, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35576580

RESUMO

To achieve chromium tolerance and high performance, a new series of high-entropy perovskites (HEPs) are investigated as cathode materials for solid oxide fuel cells (SOFCs). Multiple rare-earth, alkaline-earth, and high-order transition metal elements are used for the A-site of this ABO3 structure. A pure phase is achieved through the designed combination of different elements in seven out of eight candidates. Due to the retaining of alkaline-earth elements Sr and/or Ba, the electrical conductivities of these HEPs are in the order of 100 S/cm at 550-700 °C, a value that can practically eliminate the electronic resistance of the porous cathode. Three out of eight candidates show similar or better performance than the (La0.6Sr0.4)(Co0.2Fe0.8)O3-δ (LSCF) benchmark. It is found that A-site elements can cast a substantial influence on the overall performance even with a change as small as 10% of the total cations. It seems that each element has its individual "phenomenal activity" that can be transferred from one candidate to the other in the general setting of the perovskite structure, leading to the best candidate by using the three most active elements simultaneously at the A-site. Excellent Cr tolerance has been observed on the (La0.2Sr0.2Pr0.2Y0.2Ba0.2)Co0.2Fe0.8O3-δ sample, showing degradation of only 0.25%/kh during a 41 day operation in the presence of Cr, while LSCF increases by 100% within the first day in the same condition. X-ray photoelectron spectroscopy discovers no Sr segregation as LSCF is found in this HEP; rather, the active element Y takes more A-sites on the outermost layer after long-term operation.

2.
Nat Commun ; 12(1): 2374, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888715

RESUMO

Electric fields and currents, which are used in innovative materials processing and electrochemical energy conversion, can often alter microstructures in unexpected ways. However, little is known about the underlying mechanisms. Using ZnO-Bi2O3 as a model system, this study uncovers how an applied electric current can change the microstructural evolution through an electrochemically induced grain boundary transition. By combining aberration-corrected electron microscopy, photoluminescence spectroscopy, first-principles calculations, a generalizable thermodynamic model, and ab initio molecular dynamics, this study reveals that electrochemical reduction can cause a grain boundary disorder-to-order transition to markedly increase grain boundary diffusivities and mobilities. Consequently, abruptly enhanced or abnormal grain growth takes place. These findings advance our fundamental knowledge of grain boundary complexion (phase-like) transitions and electric field effects on microstructural stability and evolution, with broad scientific and technological impacts. A new method to tailor the grain boundary structures and properties, as well as the microstructures, electrochemically can also be envisioned.

3.
Adv Mater ; 30(20): e1705992, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29611280

RESUMO

Organic-inorganic hybrid perovskites have demonstrated tremendous potential for the next-generation electronic and optoelectronic devices due to their remarkable carrier dynamics. Current studies are focusing on polycrystals, since controlled growth of device compatible single crystals is extremely challenging. Here, the first chemical epitaxial growth of single crystal CH3 NH3 PbBr3 with controlled locations, morphologies, and orientations, using combined strategies of advanced microfabrication, homoepitaxy, and low temperature solution method is reported. The growth is found to follow a layer-by-layer model. A light emitting diode array, with each CH3 NH3 PbBr3 crystal as a single pixel, with enhanced quantum efficiencies than its polycrystalline counterparts is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA