Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chaos ; 33(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347642

RESUMO

The higher-order interactions emerging in the network topology affect the effectiveness of digital contact tracing (DCT). In this paper, we propose a mathematical model in which we use the hypergraph to describe the gathering events. In our model, the role of DCT is modeled as individuals carrying the app. When the individuals in the hyperedge all carry the app, epidemics cannot spread through this hyperedge. We develop a generalized percolation theory to investigate the epidemic outbreak size and threshold. We find that DCT can effectively suppress the epidemic spreading, i.e., decreasing the outbreak size and enlarging the threshold. DCT limits the spread of the epidemic to larger cardinality of hyperedges. On real-world networks, the inhibitory effect of DCT on the spread of epidemics is evident when the spread of epidemics is small.


Assuntos
Busca de Comunicante , Epidemias , Humanos , Modelos Teóricos , Surtos de Doenças
2.
Chaos Solitons Fractals ; 166: 112909, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36467017

RESUMO

The pathogen diversity means that multiple strains coexist, and widely exist in the biology systems. The new mutation of SARS-CoV-2 leading to worldwide pathogen diversity is a typical example. What are the main factors of inducing the pathogen diversity? Previous studies indicated the pathogen mutation is the most important reason for inducing the pathogen diversity. The traffic network and gene network are crucial in shaping the dynamics of pathogen contagion, while their roles for the pathogen diversity still lacking a theoretical study. To this end, we propose a reaction-diffusion process of pathogens with mutations on meta-population networks, which includes population movement and strain mutation. We extend the Microscopic Markov Chain Approach (MMCA) to describe the model. Traffic networks make pathogen diversity more likely to occur in cities with lower infection densities. The likelihood of pathogen diversity is low in cities with short effective distances in the traffic network. Star-type gene network is more likely to lead to pathogen diversity than lattice-type and chain-type gene networks. When pathogen localization is present, infection is localized to strains that are at the endpoints of the gene network. Both the increased probability of movement and mutation promote pathogen diversity. The results also show that the population tends to move to cities with short effective distances, resulting in the infection density is high.

3.
Chaos ; 32(9): 093135, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36182379

RESUMO

Higher-order interactions have significant implications for the dynamics of competing epidemic spreads. In this paper, a competing spread model for two simplicial irreversible epidemics (i.e., susceptible-infected-removed epidemics) on higher-order networks is proposed. The simplicial complexes are based on synthetic (including homogeneous and heterogeneous) and real-world networks. The spread process of two epidemics is theoretically analyzed by extending the microscopic Markov chain approach. When the two epidemics have the same 2-simplex infection rate and the 1-simplex infection rate of epidemic A ( λ) is fixed at zero, an increase in the 1-simplex infection rate of epidemic B ( λ) causes a transition from continuous growth to sharp growth in the spread of epidemic B with λ. When λ > 0, the growth of epidemic B is always continuous. With the increase of λ, the outbreak threshold of epidemic B is delayed. When the difference in 1-simplex infection rates between the two epidemics reaches approximately three times, the stronger side obviously dominates. Otherwise, the coexistence of the two epidemics is always observed. When the 1-simplex infection rates are symmetrical, the increase in competition will accelerate the spread process and expand the spread area of both epidemics; when the 1-simplex infection rates are asymmetrical, the spread area of one epidemic increases with an increase in the 1-simplex infection rate from this epidemic while the other decreases. Finally, the influence of 2-simplex infection rates on the competing spread is discussed. An increase in 2-simplex infection rates leads to sharp growth in one of the epidemics.


Assuntos
Epidemias , Surtos de Doenças , Suscetibilidade a Doenças , Humanos , Cadeias de Markov
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA