Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 613(7943): 274-279, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631650

RESUMO

The development of next-generation electronics requires scaling of channel material thickness down to the two-dimensional limit while maintaining ultralow contact resistance1,2. Transition-metal dichalcogenides can sustain transistor scaling to the end of roadmap, but despite a myriad of efforts, the device performance remains contact-limited3-12. In particular, the contact resistance has not surpassed that of covalently bonded metal-semiconductor junctions owing to the intrinsic van der Waals gap, and the best contact technologies are facing stability issues3,7. Here we push the electrical contact of monolayer molybdenum disulfide close to the quantum limit by hybridization of energy bands with semi-metallic antimony ([Formula: see text]) through strong van der Waals interactions. The contacts exhibit a low contact resistance of 42 ohm micrometres and excellent stability at 125 degrees Celsius. Owing to improved contacts, short-channel molybdenum disulfide transistors show current saturation under one-volt drain bias with an on-state current of 1.23 milliamperes per micrometre, an on/off ratio over 108 and an intrinsic delay of 74 femtoseconds. These performances outperformed equivalent silicon complementary metal-oxide-semiconductor technologies and satisfied the 2028 roadmap target. We further fabricate large-area device arrays and demonstrate low variability in contact resistance, threshold voltage, subthreshold swing, on/off ratio, on-state current and transconductance13. The excellent electrical performance, stability and variability make antimony ([Formula: see text]) a promising contact technology for transition-metal-dichalcogenide-based electronics beyond silicon.

2.
Nature ; 605(7908): 69-75, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508774

RESUMO

Two-dimensional transition-metal dichalcogenides (TMDs) are of interest for beyond-silicon electronics1,2. It has been suggested that bilayer TMDs, which combine good electrostatic control, smaller bandgap and higher mobility than monolayers, could potentially provide improvements in the energy-delay product of transistors3-5. However, despite advances in the growth of monolayer TMDs6-14, the controlled epitaxial growth of multilayers remains a challenge15. Here we report the uniform nucleation (>99%) of bilayer molybdenum disulfide (MoS2) on c-plane sapphire. In particular, we engineer the atomic terrace height on c-plane sapphire to enable an edge-nucleation mechanism and the coalescence of MoS2 domains into continuous, centimetre-scale films. Fabricated field-effect transistor (FET) devices based on bilayer MoS2 channels show substantial improvements in mobility (up to 122.6 cm2 V-1 s-1) and variation compared with FETs based on monolayer films. Furthermore, short-channel FETs exhibit an on-state current of 1.27 mA µm-1, which exceeds the 2028 roadmap target for high-performance FETs16.

3.
Nature ; 603(7899): 63-67, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35236971

RESUMO

Topological domains in ferroelectrics1-5 have received much attention recently owing to their novel functionalities and potential applications6,7 in electronic devices. So far, however, such topological polar structures have been observed only in superlattices grown on oxide substrates, which limits their applications in silicon-based electronics. Here we report the realization of room-temperature skyrmion-like polar nanodomains in lead titanate/strontium titanate bilayers transferred onto silicon. Moreover, an external electric field can reversibly switch these nanodomains into the other type of polar texture, which substantially modifies their resistive behaviours. The polar-configuration-modulated resistance is ascribed to the distinct band bending and charge carrier distribution in the core of the two types of polar texture. The integration of high-density (more than 200 gigabits per square inch) switchable skyrmion-like polar nanodomains on silicon may enable non-volatile memory applications using topological polar structures in oxides.

4.
Nature ; 575(7783): 480-484, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31610544

RESUMO

The distribution of charge density in materials dictates their chemical bonding, electronic transport, and optical and mechanical properties. Indirectly measuring the charge density of bulk materials is possible through X-ray or electron diffraction techniques by fitting their structure factors1-3, but only if the sample is perfectly homogeneous within the area illuminated by the beam. Meanwhile, scanning tunnelling microscopy and atomic force microscopy enable us to see chemical bonds, but only on the surface4-6. It remains a challenge to resolve charge density in nanostructures and functional materials with imperfect crystalline structures-such as those with defects, interfaces or boundaries at which new physics emerges. Here we describe the development of a real-space imaging technique that can directly map the local charge density of crystalline materials with sub-ångström resolution, using scanning transmission electron microscopy alongside an angle-resolved pixellated fast-electron detector. Using this technique, we image the interfacial charge distribution and ferroelectric polarization in a SrTiO3/BiFeO3 heterojunction in four dimensions, and discover charge accumulation at the interface that is induced by the penetration of the polarization field of BiFeO3. We validate this finding through side-by-side comparison with density functional theory calculations. Our charge-density imaging method advances electron microscopy from detecting atoms to imaging electron distributions, providing a new way of studying local bonding in crystalline solids.

5.
Nature ; 570(7759): 87-90, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31168106

RESUMO

Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides reveal the electronic phases that emerge when a bulk crystal is reduced to a monolayer1-4. Transition-metal oxide perovskites host a variety of correlated electronic phases5-12, so similar behaviour in monolayer materials based on transition-metal oxide perovskites would open the door to a rich spectrum of exotic 2D correlated phases that have not yet been explored. Here we report the fabrication of freestanding perovskite films with high crystalline quality almost down to a single unit cell. Using a recently developed method based on water-soluble Sr3Al2O6 as the sacrificial buffer layer13,14 we synthesize freestanding SrTiO3 and BiFeO3 ultrathin films by reactive molecular beam epitaxy and transfer them to diverse substrates, in particular crystalline silicon wafers and holey carbon films. We find that freestanding BiFeO3 films exhibit unexpected and giant tetragonality and polarization when approaching the 2D limit. Our results demonstrate the absence of a critical thickness for stabilizing the crystalline order in the freestanding ultrathin oxide films. The ability to synthesize and transfer crystalline freestanding perovskite films without any thickness limitation onto any desired substrate creates opportunities for research into 2D correlated phases and interfacial phenomena that have not previously been technically possible.

6.
Opt Express ; 32(8): 14801-14807, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859416

RESUMO

Nanodomain engineering in lithium niobate on insulator (LNOI) is critical to realize advanced photonic circuits. Here, we investigate the tip-induced nanodomain formation in x-cut LNOI. The effective electric field exhibits a mirror symmetry, which can be divided into preceding and sequential halves according to the tip movement. Under our configuration, the preceding electric field plays a decisive role rather than the sequential one as in previous reports. The mechanism is attributed to the screening field formed by the preceding field counteracting the effect of the subsequent one. In experiment, we successfully fabricate nanodomain dots, lines, and periodic arrays. Our work offers a useful approach for nanoscale domain engineering in x-cut LNOI, which has potential applications in integrated optoelectronic devices.

7.
Nano Lett ; 23(7): 2808-2815, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36961344

RESUMO

Tuning the ferroelectric domain structure by a combination of elastic and electrostatic engineering provides an effective route for enhanced piezoelectricity. However, for epitaxial thin films, the clamping effect imposed by the substrate does not allow aftergrowth tuning and also limits the electromechanical response. In contrast, freestanding membranes, which are free of substrate constraints, enable the tuning of a subtle balance between elastic and electrostatic energies, giving new platforms for enhanced and tunable functionalities. Here, highly tunable piezoelectricity is demonstrated in freestanding PbTiO3 membranes, by varying the ferroelectric domain structures from c-dominated to c/a and a domains via aftergrowth thermal treatment. Significantly, the piezoelectric coefficient of the c/a domain structure is enhanced by a factor of 2.5 compared with typical c domain PbTiO3. This work presents a new strategy to manipulate the piezoelectricity in ferroelectric membranes, highlighting their great potential for nano actuators, transducers, sensors and other NEMS device applications.

8.
Opt Express ; 31(23): 37464-37471, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017874

RESUMO

Lithium niobate on insulator (LNOI) is a powerful platform for integrated photonic circuits. Recently, advanced applications in nonlinear and quantum optics require to controllably fabricate nano-resolution domain structures in LNOI. Here, we report on the fabrication of stable domain structures with sub-100 nm feature size through piezoelectric force microscopy (PFM) tip poling in a z-cut LNOI. In experiment, the domain dot with an initial diameter of 80 nm and the domain line with an initial width of 50 nm can survive after a storage of more than 3 months. Particularly, we demonstrate the successful fabrication of 1D stable domain array with a period down to 100 nm and a duty cycle of ∼50%. Our method paves the way to precisely manipulate frequency conversion and quantum entanglement on an LNOI chip.

9.
Phys Rev Lett ; 130(12): 126801, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027865

RESUMO

The increasing miniaturization of electronics requires a better understanding of material properties at the nanoscale. Many studies have shown that there is a ferroelectric size limit in oxides, below which the ferroelectricity will be strongly suppressed due to the depolarization field, and whether such a limit still exists in the absence of the depolarization field remains unclear. Here, by applying uniaxial strain, we obtain pure in-plane polarized ferroelectricity in ultrathin SrTiO_{3} membranes, providing a clean system with high tunability to explore ferroelectric size effects especially the thickness-dependent ferroelectric instability with no depolarization field. Surprisingly, the domain size, ferroelectric transition temperature, and critical strain for room-temperature ferroelectricity all exhibit significant thickness dependence. These results indicate that the stability of ferroelectricity is suppressed (enhanced) by increasing the surface or bulk ratio (strain), which can be explained by considering the thickness-dependent dipole-dipole interactions within the transverse Ising model. Our study provides new insights into ferroelectric size effects and sheds light on the applications of ferroelectric thin films in nanoelectronics.

10.
Nature ; 502(7472): 532-6, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24132232

RESUMO

The miniaturization and integration of frequency-agile microwave circuits--relevant to electronically tunable filters, antennas, resonators and phase shifters--with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at gigahertz frequencies can be tuned by applying a quasi-static electric field. Appropriate systems such as BaxSr1-xTiO3 have a paraelectric-ferroelectric transition just below ambient temperature, providing high tunability. Unfortunately, such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss--Srn+1TinO3n+1 phases--in which (SrO)2 crystallographic shear planes provide an alternative to the formation of point defects for accommodating non-stoichiometry. Here we report the experimental realization of a highly tunable ground state arising from the emergence of a local ferroelectric instability in biaxially strained Srn+1TinO3n+1 phases with n ≥ 3 at frequencies up to 125 GHz. In contrast to traditional methods of modifying ferroelectrics-doping or strain-in this unique system an increase in the separation between the (SrO)2 planes, which can be achieved by changing n, bolsters the local ferroelectric instability. This new control parameter, n, can be exploited to achieve a figure of merit at room temperature that rivals all known tunable microwave dielectrics.

11.
Adv Mater ; : e2401342, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38754479

RESUMO

Since their discovery, the infinite-layer nickelates have been regarded as an appealing system for gaining deeper insights into high-temperature superconductivity (HTSC). However, the synthesis of superconducting samples has been proven to be challenging. Here, an ultrahigh vacuum (UHV) in situ ${\mathrm{\text{in situ}}}$ reduction method is developed using atomic hydrogen as a reducing agent and is applied in the lanthanum nickelate system. The reduction parameters, including the reduction temperature (TR) and hydrogen pressure (PH), are systematically explored. It is found that the reduction window for achieving superconducting transition is quite wide, reaching nearly 80°C in TR and three orders of magnitude in PH when the reduction time is set to 30 min. And there exists an optimal PH for achieving the highest Tc if both TR and reduction time are fixed. More prominently, as confirmed by atomic force microscopy and scanning transmission electron microscopy, the atomically flat surface can be preserved during the in situ ${\mathrm{\text{in situ}}}$ reduction process, providing advantages over the ex situ ${\mathrm{\text{ex situ}}}$ CaH2 method for surface-sensitive experiments.

12.
Adv Mater ; : e2402916, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847344

RESUMO

The observation of superconductivity in infinite-layer nickelates has attracted significant attention due to its potential as a new platform for exploring high-Tc superconductivity. However, thus far, superconductivity has only been observed in epitaxial thin films, which limits the manipulation capabilities and modulation methods compared to two-dimensional exfoliated materials. Given the exceptionally giant strain tunability and stacking capability of freestanding membranes, separating superconducting nickelates from the as-grown substrate is a novel way to engineer the superconductivity and uncover the underlying physics. Herein, this work reports the synthesis of the superconducting freestanding La0.8Sr0.2NiO2 membranes ( T c zero = 10.6 K ${T}_{\mathrm{c}}^{\mathrm{zero}}\ =\ 10.6\ \mathrm{K}$ ), emphasizing the crucial roles of the interface engineering in the precursor phase film growth and the quick transfer process in achieving superconductivity. This work offers a new versatile platform for investigating superconductivity in nickelates, such as the pairing symmetry via constructing Josephson tunneling junctions and higher Tc values via high-pressure experiments.

13.
Adv Mater ; 36(15): e2307682, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238890

RESUMO

Freestanding perovskite oxide membranes have drawn great attention recently since they offer exceptional structural tunability and stacking ability, providing new opportunities in fundamental research and potential device applications in silicon-based semiconductor technology. Among different types of sacrificial layers, the (Ca, Sr, Ba)3Al2O6 compounds are most widely used since they can be dissolved in water and prepare high-quality perovskite oxide membranes with clean and sharp surfaces and interfaces; However, the typical transfer process takes a long time (up to hours) in obtaining millimeter-size freestanding membranes, let alone realize wafer-scale samples with high yield. Here, a new member of the SrO-Al2O3 family, Sr4Al2O7 is introduced, and its high dissolution rate, ≈10 times higher than that of Sr3Al2O6 is demonstrated. The high-dissolution-rate of Sr4Al2O7 is most likely related to the more discrete Al-O networks and higher concentration of water-soluble Sr-O species in this compound. This work significantly facilitates the preparation of freestanding membranes and sheds light on the integration of multifunctional perovskite oxides in practical electronic devices.

14.
J Phys Condens Matter ; 35(33)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37172598

RESUMO

Two-dimensional (2D) transition metal chalcogenides have attracted enormous attention due to their stunning properties and great prospects for applications. Most of the reported 2D materials have layered structure, and non-layered transition metal chalcogenides are rare. Particularly, chromium chalcogenides are highly complexed in terms of structural phases. Researches on their representative chalcogenides, Cr2S3and Cr2Se3, are insufficient and most of them focus on individual crystal grains. In this study, large-scale Cr2S3and Cr2Se3films with controllable thickness are successfully grown, and their crystalline qualities are confirmed by multiple characterizations. Moreover, the thickness-dependent Raman vibrations are investigated systematically, presenting slight redshift with increasing thickness. The fundamental physical properties of grown Cr2S3and Cr2Se3films, including optical bandgap, activation energy and electrical properties, are measured with different thicknesses. The 1.9 nm thick Cr2S3and Cr2Se3films show narrow optical bandgap of 0.732 and 0.672 eV, respectively. The electrical properties of Cr2S3films demonstratep-type semiconductor behaviours, while the Cr2Se3films exhibit no gate response. This work can provide a feasible method for growing large-scale Cr2S3and Cr2Se3films, and reveal fundamental information of their physical properties, which is helpful for future applications.

15.
ACS Nano ; 17(21): 21829-21837, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37922194

RESUMO

Controlling the dynamic processes, such as generation, separation, transport, and recombination, of photoexcited carriers in a semiconductor is foundational in the design of various devices for optoelectronic applications. One may imagine that if different processes can be manipulated in one single device and thus generate useful signals, a multifunctional device can be realized, and the toolbox for integrated optoelectronics will be expanded. Here, we revealed that in a graphene/ZnTe/graphene van der Waals (vdW) heterostructure, the carriers can be generated by illumination from visible to infrared frequencies, and thus, the detected spectrum range extends to the communication band, well beyond the band gap of ZnTe (2.26 eV). More importantly, we are able to control the competition between separation and recombination of the photoexcited carriers by an electric bias along the thickness-defined channel of the ZnTe flake: as the bias increases, the photodetecting performance, e.g. response speed and photocurrent, are improved due to the efficient separation of carriers; synchronously, the photoluminescence (PL) intensity decreases and even switches off due to the suppressed recombination process. The ZnTe-based vdW heterostructure device thus integrates both photodetection and PL switching functions by manipulating the generation, separation, transport, and recombination of carriers, which may inspire the design of the next generation of miniaturized optoelectronic devices based on the vdW heterostructures made by various thin flakes.

16.
Nat Commun ; 14(1): 5457, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674029

RESUMO

High-quality graphene-based van der Waals superlattices are crucial for investigating physical properties and developing functional devices. However, achieving homogeneous wafer-scale graphene-based superlattices with controlled twist angles is challenging. Here, we present a flat-to-flat transfer method for fabricating wafer-scale graphene and graphene-based superlattices. The aqueous solution between graphene and substrate is removed by a two-step spinning-assisted dehydration procedure with the optimal wetting angle. Proton-assisted treatment is further used to clean graphene surfaces and interfaces, which also decouples graphene and neutralizes the doping levels. Twist angles between different layers are accurately controlled by adjusting the macroscopic stacking angle through their wafer flats. Transferred films exhibit minimal defects, homogeneous morphology, and uniform electrical properties over wafer scale. Even at room temperature, robust quantum Hall effects are observed in graphene films with centimetre-scale linewidth. Our stacking transfer method can facilitate the fabrication of graphene-based van der Waals superlattices and accelerate functional device applications.

17.
Adv Mater ; 35(32): e2303400, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37235743

RESUMO

After being expected to be a promising analog to cuprates for decades, superconductivity has recently been discovered in infinite-layer nickelates, providing new opportunities to explore mechanisms of high-temperature superconductivity. However, in sharp contrast to the single-band and anisotropic superconductivity in cuprates, nickelates exhibit a multi-band electronic structure and an unexpected isotropic superconductivity as reported recently, which challenges the cuprate-like picture in nickelates. Here, it is shown that strong anisotropic magnetotransport behaviors exist in La-based nickelate films with enhanced crystallinity and superconductivity ( T c onset $T_{\rm{c}}^{{\rm{onset}}}$ = 18.8 K, T c zero $T_{\rm{c}}^{{\rm{zero}}}$ = 16.5 K). The upper critical fields are anisotropic and violate the estimated Bardeen-Cooper-Schrieffer (BCS) Pauli limit ( H Pauli , µ = 1 µ B = 1.86 × T c , H = 0 ${H}_{\mathrm{Pauli},\mu =1{\mu}_{B}}=1.86\ensuremath{\times{}}{T}_{\mathrm{c},H=0}$ ) for in-plane magnetic fields. Moreover, the anisotropic superconductivity is further manifested by the cusp-like peak of the angle-dependent Tc and the vortex motion anisotropy under external magnetic fields.

18.
Phys Rev Lett ; 109(26): 267001, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368603

RESUMO

The asymmetry between electron and hole doping remains one of the central issues in high-temperature cuprate superconductivity, but our understanding of the electron-doped cuprates has been hampered by apparent discrepancies between the only two known families: Re(2-x)Ce(x)CuO4 and A(1-x)La(x)CuO2. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially stabilized Sr(1-x)La(x)CuO2 thin films synthesized by oxide molecular-beam epitaxy. Our results reveal a strong coupling between electrons and (π, π) antiferromagnetism that induces a Fermi surface reconstruction which pushes the nodal states below the Fermi level. This removes the hole pocket near (π/2, π/2), realizing nodeless superconductivity without requiring a change in the symmetry of the order parameter and providing a universal understanding of all electron-doped cuprates.

19.
ACS Appl Mater Interfaces ; 14(47): 53442-53449, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36383755

RESUMO

Two-dimensional electron gas (2DEG) at the interface of amorphous Al2O3/SrTiO3 (aAO/STO) heterostructures has received considerable attention owing to its convenience of fabrication and relatively high mobility. The integration of these 2DEG heterostructures on a silicon wafer is highly desired for electronic applications but remains challanging up to date. Here, conductive aAO/STO heterostructures have been synthesized on a silicon wafer via a growth-and-transfer method. A scanning transmission electron microscopy image shows flat and close contact between STO membranes and a Si wafer. Electron energy loss spectroscopic measurements reveal the interfacial Ti valence state evolution, which identifies the formation of 2D charge carriers confined at the interface of aAO/STO. This work provides a feasible strategy for the integration of 2DEG on a silicon wafer and other desired substrates for potential functional and flexible electronic devices.

20.
Nat Commun ; 13(1): 4332, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882838

RESUMO

Ferroelectric domain wall memories have been proposed as a promising candidate for nonvolatile memories, given their intriguing advantages including low energy consumption and high-density integration. Perovskite oxides possess superior ferroelectric prosperities but perovskite-based domain wall memory integrated on silicon has rarely been reported due to the technical challenges in the sample preparation. Here, we demonstrate a domain wall memory prototype utilizing freestanding BaTiO3 membranes transferred onto silicon. While as-grown BaTiO3 films on (001) SrTiO3 substrate are purely c-axis polarized, we find they exhibit distinct in-plane multidomain structures after released from the substrate and integrated onto silicon due to the collective effects from depolarizing field and strain relaxation. Based on the strong in-plane ferroelectricity, conductive domain walls with reading currents up to nanoampere are observed and can be both created and erased artificially, highlighting the great potential of the integration of perovskite oxides with silicon for ferroelectric domain wall memories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA