Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Immunol ; 188(5): 2399-409, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22279103

RESUMO

CD163-L1 belongs to the group B scavenger receptor cysteine-rich family of proteins, where the CD163-L1 gene arose by duplication of the gene encoding the hemoglobin scavenger receptor CD163 in late evolution. The current data demonstrate that CD163-L1 is highly expressed and colocalizes with CD163 on large subsets of macrophages, but in contrast to CD163 the expression is low or absent in monocytes and in alveolar macrophages, glia, and Kupffer cells. The expression of CD163-L1 increases when cultured monocytes are M-CSF stimulated to macrophages, and the expression is further increased by the acute-phase mediator IL-6 and the anti-inflammatory mediator IL-10 but is suppressed by the proinflammatory mediators IL-4, IL-13, TNF-α, and LPS/IFN-γ. Furthermore, we show that CD163-L1 is an endocytic receptor, which internalizes independently of cross-linking through a clathrin-mediated pathway. Two cytoplasmic splice variants of CD163-L1 are differentially expressed and have different subcellular distribution patterns. Despite its many similarities to CD163, CD163-L1 does not possess measurable affinity for CD163 ligands such as the haptoglobin-hemoglobin complex or various bacteria. In conclusion, CD163-L1 exhibits similarity to CD163 in terms of structure and regulated expression in cultured monocytes but shows clear differences compared with the known CD163 ligand preferences and expression pattern in the pool of tissue macrophages. We postulate that CD163-L1 functions as a scavenger receptor for one or several ligands that might have a role in resolution of inflammation.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Endocitose/imunologia , Mediadores da Inflamação/fisiologia , Macrófagos/imunologia , Macrófagos/patologia , Receptores de Superfície Celular/metabolismo , Animais , Antígenos CD/biossíntese , Antígenos CD/fisiologia , Antígenos de Diferenciação Mielomonocítica/biossíntese , Antígenos de Diferenciação Mielomonocítica/fisiologia , Diferenciação Celular/imunologia , Células Cultivadas , Células HEK293 , Células HL-60 , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Células Jurkat , Células de Kupffer/imunologia , Células de Kupffer/patologia , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Macrófagos/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Neuroglia/imunologia , Neuroglia/patologia , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/fisiologia , Células U937
2.
Nat Rev Gastroenterol Hepatol ; 9(6): 345-54, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22547309

RESUMO

Vitamin B(12) (B(12); also known as cobalamin) is a cofactor in many metabolic processes; deficiency of this vitamin is associated with megaloblastic anaemia and various neurological disorders. In contrast to many prokaryotes, humans and other mammals are unable to synthesize B(12). Instead, a sophisticated pathway for specific uptake and transport of this molecule has evolved. Failure in the gastrointestinal part of this pathway is the most common cause of nondietary-induced B(12) deficiency disease. However, although less frequent, defects in cellular processing and further downstream steps in the transport pathway are also known culprits of functional B(12) deficiency. Biochemical and genetic approaches have identified novel proteins in the B(12) transport pathway--now known to involve more than 15 gene products--delineating a coherent pathway for B(12) trafficking from food to the body's cells. Some of these gene products are specifically dedicated to B(12) transport, whereas others embrace additional roles, which explains the heterogeneity in the clinical picture of the many genetic disorders causing B(12) deficiency. This Review describes basic and clinical features of this multistep pathway with emphasis on gastrointestinal transport of B(12) and its importance in clinical medicine.


Assuntos
Alimentos , Trato Gastrointestinal/metabolismo , Vitamina B 12/metabolismo , Transporte Biológico/fisiologia , Trato Gastrointestinal/citologia , Humanos , Transdução de Sinais/fisiologia , Deficiência de Vitamina B 12/genética , Deficiência de Vitamina B 12/fisiopatologia
3.
Science ; 320(5876): 677-81, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18451305

RESUMO

The protozoan parasite Trypanosoma brucei is lysed by apolipoprotein L-I, a component of human high-density lipoprotein (HDL) particles that are also characterized by the presence of haptoglobin-related protein. We report that this process is mediated by a parasite glycoprotein receptor, which binds the haptoglobin-hemoglobin complex with high affinity for the uptake and incorporation of heme into intracellular hemoproteins. In mice, this receptor was required for optimal parasite growth and the resistance of parasites to the oxidative burst by host macrophages. In humans, the trypanosome receptor also recognized the complex between hemoglobin and haptoglobin-related protein, which explains its ability to capture trypanolytic HDLs. Thus, in humans the presence of haptoglobin-related protein has diverted the function of the trypanosome haptoglobin-hemoglobin receptor to elicit innate host immunity against the parasite.


Assuntos
Receptores de Superfície Celular/imunologia , Trypanosoma brucei brucei/imunologia , Sequência de Aminoácidos , Animais , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Humanos , Imunidade Inata , Lipoproteínas HDL/metabolismo , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Receptores de Superfície Celular/metabolismo
4.
Proc Natl Acad Sci U S A ; 104(10): 4118-23, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17360487

RESUMO

Apolipoprotein L-I (apoL-I) is a human high-density lipoprotein (HDL) component able to kill Trypanosoma brucei brucei by forming anion-selective pores in the lysosomal membrane of the parasite. Another HDL component, haptoglobin-related protein (Hpr), has been suggested as an additional toxin required for full trypanolytic activity of normal human serum. We recently reported the case of a human lacking apoL-I (apoL-I(-/-)HS) as the result of frameshift mutations in both apoL-I alleles. Here, we show that this serum, devoid of any trypanolytic activity, exhibits normal concentrations of HDL-bound Hpr. Conversely, the serum of individuals with normal HDL-bound apoL-I but who lack Hpr and haptoglobin [Hp(r)(-/-)HS] as the result of gene deletion (anhaptoglobinemia) exhibited phenotypically normal but delayed trypanolytic activity. The trypanolytic properties of Hp(r)(-/-)HS were mimicked by free recombinant apoL-I, whereas recombinant Hpr did not affect trypanosomes. The lysis delay observed with either Hp(r)(-/-)HS or recombinant apoL-I could entirely be attributed to a defect in the uptake of the lytic components. Thus, apoL-I is responsible for the trypanolytic activity of normal human serum, whereas Hpr allows fast uptake of the carrier HDL particles, presumably through their binding to an Hp/Hpr surface receptor of the parasite.


Assuntos
Antígenos de Neoplasias/fisiologia , Apolipoproteínas/fisiologia , Proteínas Sanguíneas/fisiologia , Haptoglobinas/fisiologia , Lipoproteínas HDL/fisiologia , Animais , Antígenos de Neoplasias/sangue , Apolipoproteína L1 , Apolipoproteínas/sangue , Western Blotting , Cromatografia de Afinidade , Humanos , Sistema Imunitário , Cinética , Lipoproteínas HDL/sangue , Camundongos , Proteínas Recombinantes/química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/tratamento farmacológico
5.
Blood ; 108(1): 353-61, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16543473

RESUMO

Haptoglobin (Hp) is a plasma protein synthesized primarily by hepatocytes. It exerts a broad range of anti-inflammatory activities and acts indirectly as a bacteriostatic agent and an antioxidant by virtue of its ability to bind free hemoglobin (Hb) and to facilitate its immediate clearance by macrophages. We identified Hp as a novel specific granule protein of neutrophils by means of immunoelectron microscopy, subcellular fractionation, and exocytosis studies. Consistent with these findings, blood cells from a patient with specific granule deficiency (SGD) lacked neutrophil-derived Hp. Neutrophils contained a large amount of highly glycosylated Hp (beta-chain 45-65 kDa) synthesized in neutrophil precursors and stored in specific granules and a small amount of Hp (beta-chain 39 kDa) endocytosed from plasma and stored in secretory vesicles. Subsequent binding studies revealed that Hp from specific granules binds to Hb. Finally, the CCAAT enhancer binding protein-epsilon (C/EBPepsilon) induced Hp transcription in a myeloid cell line, suggesting that Hp expression in myeloid cells, as in hepatocytes, is at least partially regulated by members of the C/EBP transcription factor family. Collectively, these findings demonstrate that Hp is stored in specific granules and is released by neutrophils in response to activation. Hence, neutrophil-derived Hp might reduce tissue damage and bacterial growth at sites of infection or injury by propagating anti-inflammatory activities and Hb clearance.


Assuntos
Diferenciação Celular/imunologia , Grânulos Citoplasmáticos/imunologia , Granulócitos/imunologia , Haptoglobinas/biossíntese , Síndromes de Imunodeficiência/imunologia , Neutrófilos/imunologia , Grânulos Citoplasmáticos/patologia , Perfilação da Expressão Gênica , Granulócitos/patologia , Haptoglobinas/genética , Haptoglobinas/imunologia , Humanos , Imuno-Histoquímica , Síndromes de Imunodeficiência/patologia , Neutrófilos/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA