Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 298, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509489

RESUMO

Mitochondrial genomes play important roles in studying genome evolution, phylogenetic analyses, and species identification. Amphipods (Class Malacostraca, Order Amphipoda) are one of the most ecologically diverse crustacean groups occurring in a diverse array of aquatic and terrestrial environments globally, from freshwater streams and lakes to groundwater aquifers and the deep sea, but we have a limited understanding of how habitat influences the molecular evolution of mitochondrial energy metabolism. Subterranean amphipods likely experience different evolutionary pressures on energy management compared to surface-dwelling taxa that generally encounter higher levels of predation and energy resources and live in more variable environments. In this study, we compared the mitogenomes, including the 13 protein-coding genes involved in the oxidative phosphorylation (OXPHOS) pathway, of surface and subterranean amphipods to uncover potentially different molecular signals of energy metabolism between surface and subterranean environments in this diverse crustacean group. We compared base composition, codon usage, gene order rearrangement, conducted comparative mitogenomic and phylogenomic analyses, and examined evolutionary signals of 35 amphipod mitogenomes representing 13 families, with an emphasis on Crangonyctidae. Mitogenome size, AT content, GC-skew, gene order, uncommon start codons, location of putative control region (CR), length of rrnL and intergenic spacers differed between surface and subterranean amphipods. Among crangonyctid amphipods, the spring-dwelling Crangonyx forbesi exhibited a unique gene order, a long nad5 locus, longer rrnL and rrnS loci, and unconventional start codons. Evidence of directional selection was detected in several protein-encoding genes of the OXPHOS pathway in the mitogenomes of surface amphipods, while a signal of purifying selection was more prominent in subterranean species, which is consistent with the hypothesis that the mitogenome of surface-adapted species has evolved in response to a more energy demanding environment compared to subterranean amphipods. Overall, gene order, locations of non-coding regions, and base-substitution rates points to habitat as an important factor influencing the evolution of amphipod mitogenomes.


Assuntos
Anfípodes , Genoma Mitocondrial , Humanos , Animais , Anfípodes/genética , Filogenia , Códon de Iniciação , Evolução Molecular
2.
Glob Chang Biol ; 30(1): e17066, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273563

RESUMO

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.


Assuntos
Ecossistema , Água Subterrânea , Biodiversidade , Água Doce , Poluição Ambiental
3.
Conserv Biol ; 36(1): e13722, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33598995

RESUMO

Many taxonomic groups successfully exploit groundwater environments and have adapted to a subterranean (stygobiotic) existence. Among these groups are freshwater gastropods (stygosnails), which represent a widespread and taxonomically diverse component of groundwater ecosystems in North America. However, owing to sampling difficulty and lack of targeted study, stygosnails remain among the most understudied of all subterranean groups. We conducted a literature review to assess the biodiversity and geographic associations of stygosnails, along with the threats, management activities, and policy considerations related to the groundwater systems they inhabit. We identified 39 stygosnail species known to occur in a range of groundwater habitats from karst regions in the United States and Mexico. Most stygosnails exhibit extreme narrow-range endemism, resulting in a high risk of extinction from a single catastrophic event. We found that anthropogenically driven changes to surface environments have led to changes in local hydrology and degradation of groundwater systems inhabited by stygosnails such as increased sedimentation, introduction of invasive species, groundwater extraction, or physical collapse of water-bearing passages. Consequently, 32 of the 39 described stygosnail species in the United States and Mexico have been assessed as imperiled under NatureServe criteria, and 10 species have been assessed as threatened under International Union for Conservation of Nature criteria. Compared with surface species of freshwater snails, stygosnail conservation is uniquely hindered by difficulties associated with accessing subterranean habitats for monitoring and management. Furthermore, only three species were found to have federal protection in either the United States or Mexico, and current laws regulating wildlife and water pollution at the state and federal level may be inadequate for protecting stygosnail habitats. As groundwater systems continue to be manipulated and relied on by humans, groundwater-restricted fauna such as stygosnails should be studied so unique biodiversity can be protected.


Diversidad y Conservación de Gasterópodos Subterráneos de Agua Dulce en los Estados Unidos y en México Resumen Muchos grupos taxonómicos aprovechan exitosamente los ambientes de aguas subterráneas y se han adaptado eficazmente a una existencia subterránea (estigobiótica). Entre estos grupos están los gasterópodos (estigocaracoles), los cuales representan un componente taxonómicamente diverso y de amplia distribución en los ecosistemas de aguas subterráneas en América del Norte. Sin embargo, debido a la dificultad del muestreo y a la falta de estudios enfocados, los estigocaracoles todavía son de los grupos menos estudiados de los taxones subterráneos. Realizamos una revisión de la literatura para evaluar las asociaciones geográficas y la biodiversidad de los estigocaracoles, junto con las amenazas, actividades de manejo y consideraciones políticas relacionadas con los sistemas de aguas subterráneas que habitan. Identificamos a 39 especies de estigocaracoles que se sabe se encuentran en una gama de hábitats de aguas subterráneas de las regiones kársticas en los Estados Unidos y en México. La mayoría de los estigocaracoles exhiben un endemismo extremo de extensión limitada, lo que resulta en un riesgo elevado de extinción a partir de un evento catastrófico único. Descubrimos que los cambios causados por el hombre en los ambientes superficiales han resultado en cambios en la hidrología local y en la degradación de los sistemas de aguas subterráneas habitadas por los estigocaracoles. Dichos cambios incluyen incremento de la sedimentación, la introducción de especies invasoras, la extracción de aguas subterráneas y el colapso físico de los pasos de agua. Como consecuencia, 32 de las 39 especies descritas de estigocaracoles en los Estados Unidos y en México han sido valoradas como en peligro bajo los criterios de NatureServe, y diez especies han sido valoradas como amenazadas bajo los criterios de la Unión Internacional para la Conservación de la Naturaleza. Comparada con las especies superficiales de caracoles de agua dulce, la conservación de los estigocaracoles está singularmente obstaculizada por las dificultades asociadas con el acceso a los hábitats subterráneos para su monitoreo y manejo. Además, se encontró que sólo tres especies cuentan con protección federal ya sea en Estados Unidos o en México, y puede que las leyes actuales que regulan la vida silvestre y la contaminación del agua a nivel estatal y federal sean inadecuadas para la protección de los hábitats de los estigocaracoles. Mientras los sistemas de aguas subterráneas sigan siendo manipulados y los humanos sigan dependiendo de ellos, la fauna restringida a las aguas subterráneas, como los estigocaracoles, debería ser estudiada para proteger a la biodiversidad tan única.


Assuntos
Ecossistema , Gastrópodes , Animais , Biodiversidade , Conservação dos Recursos Naturais , Água Doce , Humanos , México , Estados Unidos
4.
Conserv Biol ; 35(5): 1627-1638, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33471375

RESUMO

Many questions relevant to conservation decision-making are characterized by extreme uncertainty due to lack of empirical data and complexity of the underlying ecologic processes, leading to a rapid increase in the use of structured protocols to elicit expert knowledge. Published ecologic applications often employ a modified Delphi method, where experts provide judgments anonymously and mathematical aggregation techniques are used to combine judgments. The Sheffield elicitation framework (SHELF) differs in its behavioral approach to synthesizing individual judgments into a fully specified probability distribution for an unknown quantity. We used the SHELF protocol remotely to assess extinction risk of three subterranean aquatic species that are being considered for listing under the U.S. Endangered Species Act. We provided experts an empirical threat assessment for each known locality over a video conference and recorded judgments on the probability of population persistence over four generations with online submission forms and R-shiny apps available through the SHELF package. Despite large uncertainty for all populations, there were key differences between species' risk of extirpation based on spatial variation in dominant threats, local land use and management practices, and species' microhabitat. The resulting probability distributions provided decision makers with a full picture of uncertainty that was consistent with the probabilistic nature of risk assessments. Discussion among experts during SHELF's behavioral aggregation stage clearly documented dominant threats (e.g., development, timber harvest, animal agriculture, and cave visitation) and their interactions with local cave geology and species' habitat. Our virtual implementation of the SHELF protocol demonstrated the flexibility of the approach for conservation applications operating on budgets and time lines that can limit in-person meetings of geographically dispersed experts.


Uso del Conocimiento Experto para Respaldar la Toma de Decisiones del Acta de Especies en Peligro para Especies con Información Deficiente Resumen Muchas preguntas relevantes para la toma de decisiones de conservación se caracterizan por una incertidumbre extrema causada por la falta de información empírica y por la complejidad de los procesos ecológicos subyacentes. Esto lleva a un rápido incremento en el uso de protocolos estructurados para obtener conocimiento de los expertos en el tema. Las aplicaciones ecológicas publicadas con frecuencia emplean un método Delphi modificado, en el cual los expertos proporcionan dictámenes anónimamente y luego se usan técnicas de agregación matemática para combinar estos dictámenes. El marco de trabajo de obtención Sheffield (SHELF) difiere en su enfoque conductual para sintetizar los dictámenes individuales en una distribución de probabilidad completamente especificada para una cantidad desconocida. Usamos el protocolo SHELF remotamente para evaluar el riesgo de extinción de tres especies acuáticas subterráneas que están siendo consideradas para ser incluidas en el Acta de Especies en Peligro de los E.U.A. Les proporcionamos a los expertos una evaluación empírica de la amenaza para cada localidad conocida durante una videoconferencia y registramos los dictámenes sobre la probabilidad de la persistencia poblacional durante cuatro generaciones por medio de formularios enviados en línea y las apps R-shiny disponibles a través del paquete SHELF. A pesar de la gran incertidumbre para todas las poblaciones, hubo diferencias importantes entre el riesgo de extirpación de las especies con base en la variación espacial en las amenazas dominantes, el uso del suelo local y las prácticas de manejo, y el microhábitat de las especies. Las distribuciones resultantes de la probabilidad proporcionaron al órgano decisorio un cuadro completo de la incertidumbre que fue consistente con la naturaleza probabilística de las evaluaciones de riesgo. Las discusiones entre los expertos durante la fase de agregación conductual de SHELF documentaron claramente las amenazas dominantes (p. ej.: desarrollo, extracción de madera, agricultura animal y visitas a las cuevas) y sus interacciones con la geología de las cuevas locales y el hábitat de la especie. Nuestra implementación virtual del protocolo SHELF demostró la flexibilidad del enfoque para las aplicaciones de la conservación que operan con presupuestos y líneas de tiempo que pueden limitar las reuniones en persona de expertos dispersados geográficamente.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Ecossistema , Humanos , Probabilidade , Incerteza
5.
Mol Ecol ; 26(4): 1022-1044, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28028850

RESUMO

Divergent host use has long been suspected to drive population differentiation and speciation in plant-feeding insects. Evaluating the contribution of divergent host use to genetic differentiation can be difficult, however, as dispersal limitation and population structure may also influence patterns of genetic variation. In this study, we use double-digest restriction-associated DNA (ddRAD) sequencing to test the hypothesis that divergent host use contributes to genetic differentiation among populations of the redheaded pine sawfly (Neodiprion lecontei), a widespread pest that uses multiple Pinus hosts throughout its range in eastern North America. Because this species has a broad range and specializes on host plants known to have migrated extensively during the Pleistocene, we first assess overall genetic structure using model-based and model-free clustering methods and identify three geographically distinct genetic clusters. Next, using a composite-likelihood approach based on the site frequency spectrum and a novel strategy for maximizing the utility of linked RAD markers, we infer the population topology and date divergence to the Pleistocene. Based on existing knowledge of Pinus refugia, estimated demographic parameters and patterns of diversity among sawfly populations, we propose a Pleistocene divergence scenario for N. lecontei. Finally, using Mantel and partial Mantel tests, we identify a significant relationship between genetic distance and geography in all clusters, and between genetic distance and host use in two of three clusters. Overall, our results indicate that Pleistocene isolation, dispersal limitation and ecological divergence all contribute to genomewide differentiation in this species and support the hypothesis that host use is a common driver of population divergence in host-specialized insects.


Assuntos
Variação Genética , Genética Populacional , Himenópteros/genética , Animais , Genoma de Inseto , Geografia , Funções Verossimilhança , América do Norte , Filogenia , Pinus
6.
Adv Exp Med Biol ; 877: 187-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26515315

RESUMO

Caves and associated subterranean habitats represent some of the harshest environments on Earth, yet many organisms, including fishes, have colonized and thrive in these habitats despite the complete absence of light, and other abiotic and biotic constraints. Over 170 species of fishes are considered obligate subterranean inhabitants (stygobionts) that exhibit some degree of troglomorphy, including degeneration of eyes and reduction in pigmentation. To compensate for lack of vision, many species have evolved constructive changes to non-visual sensory modalities. In this chapter we review hearing in cavefishes, with particular emphasize on our own studies on amblyopsid cavefishes. Hearing in cavefishes has not been well studied to date, as hearing ability has only been examined in four species. Two species show no differences in hearing ability relative to their surface relatives, while the other two species (family Amblyopsidae) exhibit regression in the form of reduced hearing range and reduction in hair cell densities on sensory epithelia. In addition to reviewing our current knowledge on cavefish hearing, we offer suggestions for future avenues of research on cavefish hearing and discuss the influence of Popper and Fay on the field of cavefish bioacoustics.


Assuntos
Cavernas , Ecossistema , Peixes/fisiologia , Audição/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Evolução Biológica , Adaptação à Escuridão/fisiologia , Peixes/classificação , Perda Auditiva/fisiopatologia , Pigmentação/fisiologia
7.
Mol Phylogenet Evol ; 71: 201-13, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24315866

RESUMO

Snakes in the families Boidae and Pythonidae constitute some of the most spectacular reptiles and comprise an enormous diversity of morphology, behavior, and ecology. While many species of boas and pythons are familiar, taxonomy and evolutionary relationships within these families remain contentious and fluid. A major effort in evolutionary and conservation biology is to assemble a comprehensive Tree-of-Life, or a macro-scale phylogenetic hypothesis, for all known life on Earth. No previously published study has produced a species-level molecular phylogeny for more than 61% of boa species or 65% of python species. Using both novel and previously published sequence data, we have produced a species-level phylogeny for 84.5% of boid species and 82.5% of pythonid species, contextualized within a larger phylogeny of henophidian snakes. We obtained new sequence data for three boid, one pythonid, and two tropidophiid taxa which have never previously been included in a molecular study, in addition to generating novel sequences for seven genes across an additional 12 taxa. We compiled an 11-gene dataset for 127 taxa, consisting of the mitochondrial genes CYTB, 12S, and 16S, and the nuclear genes bdnf, bmp2, c-mos, gpr35, rag1, ntf3, odc, and slc30a1, totaling up to 7561 base pairs per taxon. We analyzed this dataset using both maximum likelihood and Bayesian inference and recovered a well-supported phylogeny for these species. We found significant evidence of discordance between taxonomy and evolutionary relationships in the genera Tropidophis, Morelia, Liasis, and Leiopython, and we found support for elevating two previously suggested boid species. We suggest a revised taxonomy for the boas (13 genera, 58 species) and pythons (8 genera, 40 species), review relationships between our study and the many other molecular phylogenetic studies of henophidian snakes, and present a taxonomic database and alignment which may be easily used and built upon by other researchers.


Assuntos
Boidae/genética , Filogenia , Animais , Teorema de Bayes , Boidae/classificação , Genes Mitocondriais , Análise de Sequência de DNA
8.
Sci Data ; 11(1): 32, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177140

RESUMO

National parks and other protected areas are important for preserving landscapes and biodiversity worldwide. An essential component of the mission of the United States (U.S.) National Park Service (NPS) requires understanding and maintaining accurate inventories of species on protected lands. We describe a new, national-scale synthesis of amphibian species occurrence in the NPS system. Many park units have a list of amphibian species observed within their borders compiled from various sources and available publicly through the NPSpecies platform. However, many of the observations in NPSpecies remain unverified and the lists are often outdated. We updated the amphibian dataset for each park unit by collating old and new park-level records and had them verified by regional experts. The new dataset contains occurrence records for 292 of the 424 NPS units and includes updated taxonomy, international and state conservation rankings, hyperlinks to a supporting reference for each record, specific notes, and related fields which can be used to better understand and manage amphibian biodiversity within a single park or group of parks.


Assuntos
Biodiversidade , Parques Recreativos , Animais , Anfíbios , Conservação dos Recursos Naturais , Estados Unidos
9.
Mol Phylogenet Evol ; 68(3): 461-70, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23669009

RESUMO

The evolutionary and biogeographic history of West Indian boid snakes (Epicrates), a group of nine species and 14 subspecies, was once thought to be well understood; however, new research has indicated that we are missing a clear understanding of the evolutionary relationships of this group. Here, we present the first multilocus, species-tree based analyses of the evolutionary relationships, divergence times, and historical biogeography of this clade with data from 10 genes and 6256 bp. We find evidence for a single colonization of the Caribbean from mainland South America in the Oligocene or early Miocene, followed by a radiation throughout the Greater Antilles and Bahamas. These findings support the previous suggestion that Epicrates sensu lato Wagler is paraphyletic with respect to the anacondas (Eunectes Wagler), and hence we restrict Epicrates to the mainland clade and use the available name Chilabothrus Duméril and Bibron for the West Indian clade. Our results suggest some diversification occurred within island banks, though most species divergence events seem to have occurred in allopatry. We also find evidence for a remarkable diversification within the Bahamian archipelago suggesting that the recognition of another Bahamian endemic species C. strigilatus is warranted.


Assuntos
Boidae/classificação , Boidae/genética , Filogenia , Filogeografia , Animais , Teorema de Bayes , Biodiversidade , Evolução Molecular , Dados de Sequência Molecular , Índias Ocidentais
10.
Biol Lett ; 9(3): 20130104, 2013 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-23536444

RESUMO

The constant darkness of caves and other subterranean habitats imposes sensory constraints that offer a unique opportunity to examine evolution of sensory modalities. Hearing in cavefishes has not been well explored, and here we show that cavefishes in the family Amblyopsidae are not only blind but have also lost a significant portion of their hearing range. Our results showed that cave and surface amblyopsids shared the same audiogram profile at low frequencies but only surface amblyopsids were able to hear frequencies higher than 800 Hz and up to 2 kHz. We measured ambient noise in aquatic cave and surface habitats and found high intensity peaks near 1 kHz for streams underground, suggesting no adaptive advantage in hearing in those frequencies. In addition, cave amblyopsids had lower hair cell densities compared with their surface relative. These traits may have evolved in response to the loud high-frequency background noise found in subterranean pools and streams. This study represents the first report of auditory regression in a subterranean organism.


Assuntos
Peixes/fisiologia , Perda Auditiva , Animais , Adaptação à Escuridão , Potenciais Evocados Auditivos
11.
Sci Rep ; 12(1): 19559, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379975

RESUMO

Diverse communities of groundwater-dwelling organisms (i.e., stygobionts) are important for human wellbeing; however, we lack an understanding of the factors driving their distributions, making it difficult to protect many at-risk species. Therefore, our study objective was to determine the landscape factors related to the occurrence of cavefishes and cave crayfishes in the Ozark Highlands ecoregion, USA. We sampled cavefishes and cave crayfishes at 61 sampling units using both visual and environmental DNA surveys. We then modeled occurrence probability in relation to lithology and human disturbance while accounting for imperfect detection. Our results indicated that occurrence probability of cave crayfishes was negatively associated with human disturbance, whereas there was a weak positive relationship between cavefish occurrence and disturbance. Both cavefishes and cave crayfishes were more likely to occur in limestone rather than dolostone lithology. Our results indicate structuring factors are related to the distribution of these taxa, but with human disturbance as a prevalent modifier of distributions for cave crayfishes. Limiting human alteration near karst features may be warranted to promote the persistence of some stygobionts. Moreover, our results indicate current sampling efforts are inadequate to detect cryptic species; therefore, expanding sampling may be needed to develop effective conservation actions.


Assuntos
Astacoidea , Cavernas , Animais , Humanos , Astacoidea/genética
12.
Biol Rev Camb Philos Soc ; 97(4): 1476-1510, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35315207

RESUMO

Subterranean ecosystems are among the most widespread environments on Earth, yet we still have poor knowledge of their biodiversity. To raise awareness of subterranean ecosystems, the essential services they provide, and their unique conservation challenges, 2021 and 2022 were designated International Years of Caves and Karst. As these ecosystems have traditionally been overlooked in global conservation agendas and multilateral agreements, a quantitative assessment of solution-based approaches to safeguard subterranean biota and associated habitats is timely. This assessment allows researchers and practitioners to understand the progress made and research needs in subterranean ecology and management. We conducted a systematic review of peer-reviewed and grey literature focused on subterranean ecosystems globally (terrestrial, freshwater, and saltwater systems), to quantify the available evidence-base for the effectiveness of conservation interventions. We selected 708 publications from the years 1964 to 2021 that discussed, recommended, or implemented 1,954 conservation interventions in subterranean ecosystems. We noted a steep increase in the number of studies from the 2000s while, surprisingly, the proportion of studies quantifying the impact of conservation interventions has steadily and significantly decreased in recent years. The effectiveness of 31% of conservation interventions has been tested statistically. We further highlight that 64% of the reported research occurred in the Palearctic and Nearctic biogeographic regions. Assessments of the effectiveness of conservation interventions were heavily biased towards indirect measures (monitoring and risk assessment), a limited sample of organisms (mostly arthropods and bats), and more accessible systems (terrestrial caves). Our results indicate that most conservation science in the field of subterranean biology does not apply a rigorous quantitative approach, resulting in sparse evidence for the effectiveness of interventions. This raises the important question of how to make conservation efforts more feasible to implement, cost-effective, and long-lasting. Although there is no single remedy, we propose a suite of potential solutions to focus our efforts better towards increasing statistical testing and stress the importance of standardising study reporting to facilitate meta-analytical exercises. We also provide a database summarising the available literature, which will help to build quantitative knowledge about interventions likely to yield the greatest impacts depending upon the subterranean species and habitats of interest. We view this as a starting point to shift away from the widespread tendency of recommending conservation interventions based on anecdotal and expert-based information rather than scientific evidence, without quantitatively testing their effectiveness.


Assuntos
Biodiversidade , Ecossistema , Cavernas , Conservação dos Recursos Naturais/métodos , Ecologia , Água Doce
13.
Mitochondrial DNA B Resour ; 6(6): 1662-1667, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34104729

RESUMO

We sequenced the mitochondrial genomes of one spring-dwelling (Crangonyx forbesi) and four groundwater amphipods (Bactrurus brachycaudus, Stygobromus allegheniensis, S. pizzinii, and S. t. potomacus) from eastern North America using a shotgun sequencing approach on an Illumina HiSeq 4000 (Illumina, San Diego, CA). All five mitochondrial genomes encoded 13 protein-coding genes, 22 transfer RNAs (tRNAs), and two ribosomal RNAs (rRNAs) representative of subphylum Crustacea. Although the four groundwater species exhibited gene orders nearly identical to the ancestral pancrustacean gene order, the spring-dwelling species, C. forbesi, possessed a transposition of the trnH-nad4-nad4l loci downstream after nad6-cytb-trnS2. Moreover, a long nad5 locus, longer rrnL, and rrnS loci, and unconventional start codons distinguished C. forbesi from the four groundwater amphipods. Overall, our five amphipod mitogenomes add to the increasing publicly available mitogenome resources for amphipods that are not only valuable for studying the evolutionary relationships of this diverse group of crustaceans but for exploring the evolution of mitochondrial genomes in general.

14.
Anat Rec (Hoboken) ; 303(1): 15-23, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30537183

RESUMO

Cave adaptation leads to unique anatomical specializations in many taxonomic groups. As the role of vision is reduced or disappears in a subterranean environment, other specializations arise to allow the organism to successfully detect and interact with their environment. A suite of unique, convergent phenotypes associated with subterranean adaptation has emerged (termed troglomorphy), with reduction or loss of pigmentation and eyes being the most conspicuous. Two vertebrate groups that have successfully colonized and adapted to subterranean environments are cavefishes and cave salamanders. There are many shared troglomorphic anatomical characters shared between these two groups, and we describe herein the morphological traits that are unique to fishes and salamanders that are adapted to caves and other subterranean habitats. Troglobionts, animals strictly bound and adapted to underground habitats, are outcomes of not just regressive evolution, but also constructive adaptation. There are skeletal changes, such as broadening and flattening of the head, as well as hypertrophy of non-visual modalities. Cavefishes and salamanders have lost eyes and pigmentation, but also enhanced mechanosenzation, chemosenzation and, in some cases, electroreception. Both cavefishes and cave salamanders have become important models in the study of the ecology, behavior, and evolution of subterranean colonization and adaptation. However, our knowledge is primarily limited to a few taxa and many questions remain to be studied. Anat Rec, 2018. © 2018 American Association for Anatomy.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Cavernas , Ecossistema , Meio Ambiente , Urodelos/anatomia & histologia , Urodelos/fisiologia , Animais
15.
PLoS One ; 15(12): e0242741, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33301442

RESUMO

The conservation and management of subterranean biodiversity is hindered by a lack of knowledge on the true distributions for many species, e.g., the Wallacean shortfall. In recent years, several studies have demonstrated the potential of environmental DNA (eDNA) as an effective approach to detect and monitor biodiversity, including rare, threatened, and endangered taxa. However, there are few eDNA studies of groundwater fauna. Here we report the results of the development and implementation of an eDNA assay targeting a short fragment of the mitochondrial CO1 locus of a critically imperiled cave crayfish, the Sweet Home Alabama Cave Crayfish (Cambarus speleocoopi), known from just four cave systems in the Interior Plateau karst region of northern Alabama. We detected C. speleocoopi DNA from water samples collected at 5 of 16 sites sampled (caves and springs), including two historical sites as well as three additional and potentially new sites in Marshall County, Alabama. All three of these sites were within 2 km of historical sites. Our study is the first to detect a groundwater crustacean in the Interior Plateau karst region. Additionally, our study contributes to the growing literature that eDNA is a viable complementary tool for detection and monitoring of a fauna that is difficult to survey and study using traditional approaches.


Assuntos
Distribuição Animal/fisiologia , Proteínas de Artrópodes/genética , Astacoidea/genética , Cavernas , DNA Ambiental/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Alabama , Animais , Proteínas de Artrópodes/metabolismo , Astacoidea/enzimologia , Biodiversidade , Conservação dos Recursos Naturais/métodos , DNA Ambiental/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Espécies em Perigo de Extinção , Expressão Gênica , Água Subterrânea , Reação em Cadeia da Polimerase
16.
Evolution ; 74(5): 936-949, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32187649

RESUMO

Cave adaptation has evolved repeatedly across the Tree of Life, famously leading to pigmentation and eye degeneration and loss, yet its macroevolutionary implications remain poorly understood. We use the North American amblyopsid fishes, a family spanning a wide degree of cave adaptation, to examine the impact of cave specialization on the modes and tempo of evolution. We reconstruct evolutionary relationships using ultraconserved element loci, estimate the ancestral histories of eye-state, and examine the impact of cave adaptation on body shape evolution. Our phylogenomic analyses provide a well-supported hypothesis for amblyopsid evolutionary relationships. The obligate blind cavefishes form a clade and the cave-facultative eyed spring cavefishes are nested within the obligate cavefishes. Using ancestral state reconstruction, we find support for at least two independent subterranean colonization events within the Amblyopsidae. Eyed and blind fishes have different body shapes, but not different rates of body shape evolution. North American amblyopsids highlight the complex nature of cave-adaptive evolution and the necessity to include multiple lines of evidence to uncover the underlying processes involved in the loss of complex traits.


Assuntos
Adaptação Biológica , Evolução Biológica , Peixes/anatomia & histologia , Peixes/genética , Animais , Cavernas , Olho/anatomia & histologia , Peixes/classificação , América do Norte , Filogenia , Pigmentação
17.
Biol Rev Camb Philos Soc ; 95(6): 1855-1872, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32841483

RESUMO

Five decades ago, a landmark paper in Science titled The Cave Environment heralded caves as ideal natural experimental laboratories in which to develop and address general questions in geology, ecology, biogeography, and evolutionary biology. Although the 'caves as laboratory' paradigm has since been advocated by subterranean biologists, there are few examples of studies that successfully translated their results into general principles. The contemporary era of big data, modelling tools, and revolutionary advances in genetics and (meta)genomics provides an opportunity to revisit unresolved questions and challenges, as well as examine promising new avenues of research in subterranean biology. Accordingly, we have developed a roadmap to guide future research endeavours in subterranean biology by adapting a well-established methodology of 'horizon scanning' to identify the highest priority research questions across six subject areas. Based on the expert opinion of 30 scientists from around the globe with complementary expertise and of different academic ages, we assembled an initial list of 258 fundamental questions concentrating on macroecology and microbial ecology, adaptation, evolution, and conservation. Subsequently, through online surveys, 130 subterranean biologists with various backgrounds assisted us in reducing our list to 50 top-priority questions. These research questions are broad in scope and ready to be addressed in the next decade. We believe this exercise will stimulate research towards a deeper understanding of subterranean biology and foster hypothesis-driven studies likely to resonate broadly from the traditional boundaries of this field.


Assuntos
Cavernas , Ecologia , Adaptação Fisiológica , Genômica
18.
Zookeys ; 898: 103-120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31875089

RESUMO

A new species of cave snail (Littorinimorpha: Cochliopidae) in the genus Antrorbis is described from the dark zone of two caves in the Appalachian Valley and Ridge province in eastern Tennessee, United States. The Tennessee Cavesnail, Antrorbis tennesseensis Perez, Shoobs, Gladstone, & Niemiller, sp. nov. is distinguished from its only known congener, Antrorbis breweri, by the absence of raised tubercles on its finely spirally striate protoconch, and its unique radular formula. Moreover, A. tennesseensis is genetically distinct from A. breweri based on substantial divergence at the mitochondrial CO1 locus. This is the first cavesnail to be described from the Appalachian Valley and Ridge (AVR) physiographic province in the state of Tennessee, which previously represented a substantial gap in the distribution of stygobitic (i.e., aquatic, subterranean-obligate) gastropods.

19.
Genes (Basel) ; 10(9)2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31455040

RESUMO

In this contribution, the aspects of reptile and amphibian speciation that emerged from research performed over the past decade are reviewed. First, this study assesses how patterns and processes of speciation depend on knowing the taxonomy of the group in question, and discuss how integrative taxonomy has contributed to speciation research in these groups. This study then reviews the research on different aspects of speciation in reptiles and amphibians, including biogeography and climatic niches, ecological speciation, the relationship between speciation rates and phenotypic traits, and genetics and genomics. Further, several case studies of speciation in reptiles and amphibians that exemplify many of these themes are discussed. These include studies of integrative taxonomy and biogeography in South American lizards, ecological speciation in European salamanders, speciation and phenotypic evolution in frogs and lizards. The final case study combines genomics and biogeography in tortoises. The field of amphibian and reptile speciation research has steadily moved forward from the assessment of geographic and ecological aspects, to incorporating other dimensions of speciation, such as genetic mechanisms and evolutionary forces. A higher degree of integration among all these dimensions emerges as a goal for future research.


Assuntos
Anfíbios/genética , Especiação Genética , Répteis/genética , Animais , Ecossistema , Evolução Molecular , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA