Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 6828, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474240

RESUMO

Tyrosinase enzyme was digitally printed on plasma pretreated polyamide-6,6 fabric using several sustainable technologies. Ink containing carboxymethyl cellulose was found to be the most suitable viscosity modifier for this enzyme. Before and after being deposited on the fabric surface, the printed inks retained enzyme activity of 69% and 60%, respectively, compared to activity prior printing process. A good number of the printed enzyme was found to be strongly adsorbed on the fabric surface even after several rinsing cycles due to surface activation by plasma treatment. Rinsed out fabrics retained a maximum activity of 34% resulting from the well-adsorbed enzymes. The activity of tyrosinase on printed fabrics was more stable than ink solution for at least 60 days. Effects of pH, temperature and enzyme kinetics on ink solution and printed fabrics were assessed. Tyrosinase printed synthetic fabrics can be utilized for a range of applications from biosensing and wastewater treatment to cultural heritage works.


Assuntos
Monofenol Mono-Oxigenase , Nylons , Tinta , Têxteis
2.
Chemosphere ; 279: 130481, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33894516

RESUMO

The immobilization of biocatalysts or other bioactive components often means their transformation from a soluble to an insoluble state by attaching them to a solid support material. Various types of fibrous textiles from both natural and synthetic sources have been studied as suitable support material for biocatalysts immobilization. Strength, inexpensiveness, high surface area, high porosity, pore size, availability in various forms, and simple preparation/functionalization techniques have made textiles a primary choice for various applications. This led to the concept of a new domain called-biocatalysts immobilization on textiles. By addressing the growing advancement in biocatalysts immobilization on textile, this study provides the first detailed overview on this topic based on the terms of preparation, progress, and application in wastewater treatment. The fundamental reason behind the necessity of biocatalysts immobilized textile as well as the potential preparation methods has been identified and discussed. The overall progress and performances of biocatalysts immobilized textile have been scrutinized and summarized based on the form of textile, catalytic activity, and various influencing factors. This review also highlighted the potential challenges and future considerations that can enhance the pervasive use of such immobilized biocatalysts in various sustainable and green chemistry applications.


Assuntos
Têxteis , Purificação da Água , Enzimas Imobilizadas
3.
Sci Rep ; 10(1): 18841, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139808

RESUMO

Although resource-efficient processes like inkjet printing have a large potential to foster the development of smart and functional textiles, one bottleneck still is the development of functional inks. To make inkjet printing and UV curing given production techniques for smart and functional specialty products, e.g. photochromic textiles, deepened knowledge about the development, rheological behavior and jetting behavior of functional ink is needed. This paper focuses on the formulation and performance of UV-responsive and UV-curable inkjet inks, which are based on photochromic dyes and their application to produce UV-responsive textiles. Two commercial photochromic dyes-Reversacol Ruby Red (RR) and Sea Green (SG), which represent dyes of the naphthopyran and spirooxazine class, respectively, have been used to develop the inks. The photochromic inks are characterized according to their physical-chemical and rheological properties in respect to temperature. The influence of temperature on the drop formation of the inks in an industrial print head is analyzed using a high-speed camera, which reveals important information regarding challenges in ink jettability. It was found that the dye structure and type used in the ink can influence the jetting behavior of photochromic UV-curable ink. More pronounced temperature sensitivity of dyes can increase the temperature-related effects of drop formation as was observed for SG ink. The printability of the RR and SG inks is framed and underpinned by theoretical calculations of the Z number. Discrepancies are observed and discussed between existing theory of ink jettability and visual evaluation of the photochromic ink.

4.
Dalton Trans ; 49(47): 17281-17300, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33201971

RESUMO

A graphene/Fe loaded polyester fabric (PET) with robust electrical and catalytic properties has been successfully developed for the first time via a simple coating-incorporation method using hyperbranched poly(amidoamine) (PAMAM) dendrimer as the binder. Both graphene oxide (GO/rGO) and zerovalent iron (Fe0) nanoparticles were loaded on the polyester fabric surface before and after chemical grafting of PAMAM. Full characterization of fabrics before and after modifications has been performed by sessile droplet goniometry, ζ-potential, K/S coating evenness, SEM, XPS, FTIR, TGA and DSC analyses. The results showed successful and uniform coating of GO/rGO and loading of Fe0 on PET and also showed the correlation between the type of chemical moiety responsible for uniform GO coating, high Fe0 loading and their electrical and catalytic activities. Sheet resistance (Rsh) analysis was carried out to measure the conductivity of the samples. The lowest Rsh (corresponding to high conductivity) was found in PET-PAM-rGO-Fe0 (0.74 ± 0.13 kΩ sq-1) followed by PET-rGO-Fe0 (1.32 ± 0.18 kΩ sq-1), PET-PAM-rGO (2.96 ± 0.08 kΩ sq-1) and PET-rGO (3.41 ± 0.34 kΩ sq-1). Furthermore, Fe0-loaded samples were found to be effective in the catalytic removal of toxic water pollutants (crystal violet dye) with ∼99% removal of pollutants in around one hour, as observed by UV-vis spectroscopy. The relatively high electrical conductivity and catalytic activity of PET-PAM-rGO-Fe0 are related to the role played by PAMAM in the uniform rGO coating and high Fe0 loading. These findings are of great importance as they allow envisaging the development of multifunctional textiles for combined smart and green chemistry application.

5.
Sci Rep ; 10(1): 16133, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999300

RESUMO

This work focuses on the optimization of heterogeneous Fenton-like removal of organic pollutant (dye) from water using newly developed fibrous catalysts based on a full factorial experimental design. This study aims to approximate the feasibility of heterogeneous Fenton-like removal process and optionally make predictions from this approximation in a form of statistical modeling. The fibrous catalysts were prepared by dispersing zerovalent iron nanoparticles on polyester fabrics (PET) before and after incorporation of either polyamidoamine (PAMAM, -NH2) dendrimer, 3-(aminopropyl) triethoxysilane (APTES, -Si-NH2) or thioglycerol (SH). The individual effect of two main factors [pH (X1) and concentration of hydrogen peroxide-[H2O2]µl (X2)] and their interactional effects on the removal process was determined at 95% confidence level by an L27 design. The results indicated that increasing the pH over 5 decreases the dye removal efficiency whereas the rise in [H2O2]µl until equilibrium point increases it. The principal effect of the type of catalysts (PET-NH2-Fe, PET-Si-NH2-Fe, and PET-SH-Fe) did not show any statistical significance. The factorial experiments demonstrated the existence of a significant synergistic interaction effect between the pH and [H2O2]µl as expressed by the values of the coefficient of interactions and analysis of variance (ANOVA). Finally, the functionalization of the resultant fibrous catalysts was validated by electrokinetic and X-ray photoelectron spectroscopy analysis. The optimization made from this study are of great importance for rational design and scaling up of fibrous catalyst for green chemistry and environmental applications.

6.
Biotechnol Bioeng ; 103(5): 845-56, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19365872

RESUMO

The purpose of this study was to investigate the changes induced by a lypolytic enzyme on the surface properties of polyethylene terephthalate (PET). Changes in surface hydrophilicity were monitored by means of water contact angle (WCA) measurements. Fourier Transform Infrared spectroscopy (FTIR) in the Attenuated Total Reflectance mode (ATR) was used to investigate the structural and conformational changes of the ethylene glycol and benzene moieties of PET. Amorphous and crystalline PET membranes were used as substrate. The lipolytic enzyme displayed higher hydrolytic activity towards the amorphous PET substrate, as demonstrated by the decrease of the WCA values. Minor changes were observed on the crystalline PET membrane. The effect of enzyme adhesion was addressed by applying a protease after-treatment which was able to remove the residual enzyme protein adhering to the surface of PET, as demonstrated by the behavior of WCA values. Significant spectral changes were observed by FTIR-ATR analysis in the spectral regions characteristic of the crystalline and amorphous PET domains. The intensity of the crystalline marker bands increased while that of the amorphous ones decreased. Accordingly, the crystallinity indexes calculated as band intensity ratios (1,341/1,410 cm(-1) and 1,120/1,100 cm(-1)) increased. Finally, the free carboxyl groups formed at the surface of PET by enzyme hydrolysis were esterified with a fluorescent alkyl bromide, 2-(bromomethyl)naphthalene (BrNP). WCA measurements confirmed that the reaction proceeded effectively. The fluorescence results indicate that the enzymatically treated PET films are more reactive towards BrNP. FTIR analysis showed that the surface of BrNP-modified PET acquired a more crystalline character.


Assuntos
Lipase/metabolismo , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Sci Rep ; 9(1): 18252, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796852

RESUMO

Inkjet printing of enzymes can facilitate many novel applications where a small amount of materials need to be deposited in a precise and flexible manner. However, maintaining the satisfactory activity of inkjet printed enzyme is a challenging task due to the requirements of ink rheology and printhead parameters. Thus to find optimum inkjetting conditions we studied the effects of several ink formulation and jetting parameters on lysozyme activity using a piezoelectric printhead. Within linear activity range of protein concentrations ink containing 50 µg/mL lysozyme showed a satisfactory activity retention of 85%. An acceptable activity of jetted ink was found at pH 6.2 and ionic strength of 0.06 molar. Glycerol was found to be an effective viscosity modifier (10-15 mPa.s), humectant and protein structure stabilizer for the prepared ink. A non-ionic surfactant when used just below critical micelle concentration was found to be favourable for the jetted inks. An increase in activity retention was observed for inks jetted after 24 hours of room temperature incubation. However, no additional activity was seen for inkjetting above the room temperature. Findings of this study would be useful for formulating other protein-based inks and setting their inkjet printing parameters without highly compromising the functionality.

8.
RSC Adv ; 8(50): 28395-28404, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35542480

RESUMO

Health concerns as a result of harmful UV-rays drive the development of UV-sensors of different kinds. In this research, a UV-responsive smart textile is produced by inkjet printing and UV-LED curing of a specifically designed photochromic ink on PET fabric. This paper focuses on tuning and characterizing the colour performance of a photochromic dye embedded in a UV-curable ink resin. The influence of industrial fabrication parameters on the crosslinking density of the UV-resin and hence on the colour kinetics is investigated. A lower crosslinking density of the UV-resin increases the kinetic switching speed of the photochromic dye molecules upon isomerization. By introducing an extended kinetic model, which defines rate constants k colouration, k decay and k decolouration, the colour performance of photochromic textiles can be predicted. Fabrication parameters present a flexible and fast alternative to polymer conjugation to control kinetics of photochromic dyes in a resin. In particular, industrial fabrication parameters during printing and curing of the photochromic ink are used to set the colour yield, colouration/decolouration rates and the durability, which are important characteristics towards the development of a UV-sensor for smart textile applications.

10.
J Biotechnol ; 121(3): 390-401, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16168510

RESUMO

An alkalophilic bacterium was isolated based on the potential of extra-cellular enzymes for bioscouring. The bacterium was identified as a new strain of Bacillus pumilus BK2 producing an extra-cellular endo-pectate lyase PL (EC 4.2.2.2). PL was purified to homogeneity in three steps and has a molecular mass of 37.3+/-4.8 kDa as determined by SDS-PAGE and an isoelectric point of pH 8.5. Peptide mass mapping by nano-LC-MS of PL revealed 15% homology with a pectate lyase from Bacillus sp. The pectate lyase exhibited optimum activity at pH 8.5 and around 70 degrees C in Tris/HCl buffer. It showed a half-life at 30 degrees C of more than 75 h. Stability decreased with increasing temperature, extremely over 60 degrees C. The enzyme did not require Ca2+ ions for activity, and was strongly inhibited by EDTA and Co2+. PL was active on polygalacturonic acid and esterified pectin, but the affinity showed a maximum for intermediate esterified pectins and decreased over a value of 50% of esterification. The best substrate was 29.5% methylated pectin. PL cleaved polygalacturonic acid via a beta-elimination mechanism as shown by NMR analysis. PL released unsaturated tetragalacturonic acid from citrus pectin and polygalacturonic acid, but did not show any side activities on other hemicelluloses. On polygalacturonic acid PL showed a Km of 0.24 gl(-1) and a vmax of 0.72 gl(-1)min(-1). The applicability of pectate lyase for the bioscouring process was tested on a cotton fabric. Removal of up to 80% of pectin was proven by means of ruthenium red dyeing and HPAEC (65%). Structural contact angle measurements clearly indicated the increased hydrophilicity of enzyme treated fabrics.


Assuntos
Bacillus/enzimologia , Polissacarídeo-Liases/química , Polissacarídeo-Liases/isolamento & purificação , Bacillus/classificação , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Cromatografia por Troca Iônica , Cobalto/farmacologia , Ácido Edético/farmacologia , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Meia-Vida , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Peso Molecular , Ressonância Magnética Nuclear Biomolecular , Mapeamento de Peptídeos , Polissacarídeo-Liases/análise , Polissacarídeo-Liases/metabolismo , Especificidade por Substrato , Temperatura , Viscosidade
11.
Biotechnol J ; 2(3): 306-15, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17219460

RESUMO

A rational approach has been applied to design a new environmentally acceptable and industrially viable enzymatic scouring process. Owing to the substrate specificity, the selection of enzymes depends on the structure and composition of the substrate, i.e. cotton fibre. The structure and composition of the outer layers of cotton fibre has been established on the basis of thorough literature study, which identifies wax and pectin removal to be the key steps for successful scouring process. Three main issues are discussed here, i.e. benchmarking of the existing alkaline scouring process, an evaluation of several selected acidic and alkaline pectinases for scouring, and the effect of wax removal treatment on pectinase performance. It has been found that the pectinolytic capability of alkaline pectinases on cotton pectin is nearly 75% higher than that of acidic pectinases. It is concluded that an efficient wax removal prior to pectinase treatment indeed results in improved performance in terms of hydrophilicity and pectin removal. To evaluate the hydrophilicity, the structural contact angle (theta) was measured using an auto-porosimeter.


Assuntos
Gossypium/metabolismo , Poligalacturonase/metabolismo , Ceras/metabolismo , Celulose/química , Celulose/metabolismo , Fibra de Algodão , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Pectinas/química , Pectinas/metabolismo , Temperatura , Têxteis/normas , Ceras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA