RESUMO
Advances in embedded electronic systems, the development of new communication protocols, and the application of artificial intelligence paradigms have enabled the improvement of current automation systems of energy management. Embedded devices integrate different sensors with connectivity, computing resources, and reduced cost. Communication and cloud services increase their performance; however, there are limitations in the implementation of these technologies. If the cloud is used as the main source of services and resources, overload problems will occur. There are no models that facilitate the complete integration and interoperability in the facilities already created. This article proposes a model for the integration of smart energy management systems in new and already created facilities, using local embedded devices, Internet of Things communication protocols and services based on artificial intelligence paradigms. All services are distributed in the new smart grid network using edge and fog computing techniques. The model proposes an architecture both to be used as support for the development of smart services and for energy management control systems adapted to the installation: a group of buildings and/or houses that shares energy management and energy generation. Machine learning to predict consumption and energy generation, electric load classification, energy distribution control, and predictive maintenance are the main utilities integrated. As an experimental case, a facility that incorporates wind and solar generation is used for development and testing. Smart grid facilities, designed with artificial intelligence algorithms, implemented with Internet of Things protocols, and embedded control devices facilitate the development, cost reduction, and the integration of new services. In this work, a method to design, develop, and install smart services in self-consumption facilities is proposed. New smart services with reduced costs are installed and tested, confirming the advantages of the proposed model.
RESUMO
The Internet of Things (IoT) has opened productive ways to cultivate soil with the use of low-cost hardware (sensors/actuators) and communication (Internet) technologies. Remote equipment and crop monitoring, predictive analytic, weather forecasting for crops or smart logistics and warehousing are some examples of these new opportunities. Nevertheless, farmers are agriculture experts but, usually, do not have experience in IoT applications. Users who use IoT applications must participate in its design, improving the integration and use. In this work, different industrial agricultural facilities are analysed with farmers and growers to design new functionalities based on IoT paradigms deployment. User-centred design model is used to obtain knowledge and experience in the process of introducing technology in agricultural applications. Internet of things paradigms are used as resources to facilitate the decision making. IoT architecture, operating rules and smart processes are implemented using a distributed model based on edge and fog computing paradigms. A communication architecture is proposed using these technologies. The aim is to help farmers to develop smart systems both, in current and new facilities. Different decision trees to automate the installation, designed by the farmer, can be easily deployed using the method proposed in this document.
RESUMO
Electromagnetic radiation is energy that interacts with matter. The interaction process is of great importance to the sensing applications that characterize material media. Parameters like constant dielectric represent matter characteristics and they are identified using emission, interaction and reception of electromagnetic radiation in adapted environmental conditions. How the electromagnetic wave responds when it interacts with the material media depends on the range of frequency used and the medium parameters. Different disciplines use this interaction and provides non-intrusive applications with clear benefits, remote sensing, earth sciences (geology, atmosphere, hydrosphere), biological or medical disciplines use this interaction and provides non-intrusive applications with clear benefits. Electromagnetic waves are transmitted and analyzed in the receiver to determine the interaction produced. In this work a method based in differential measurement technique is proposed as a novel way of detecting and characterizing electromagnetic matter characteristics using sensors based on a microstrip patch. The experimental results, based on simulations, show that it is possible to obtain benefits from the behavior of the wave-medium interaction using differential measurement on reception of electromagnetic waves at different frequencies or environmental conditions. Differential method introduce advantages in measure processes and promote new sensors development. A new microstrip sensor that uses differential time measures is proposed to show the possibilities of this method.
RESUMO
Human gait is mainly related to the foot and leg movements but, obviously, the entire motor system of the human body is involved. We hypothesise that movement parameters such as dynamic balance, movement harmony of each body element (arms, head, thorax ) could enable us to finely characterise gait singularities to pinpoint potential diseases or abnormalities in advance. Since this paper deals with the preliminary problem pertaining to the classification of normal and abnormal gait, our study will revolve around the lower part of the body. Our proposal presents a functional specification of gait in which only observational kinematic aspects are discussed. The resultant specification will confidently be open enough to be applied to a variety of gait analysis problems encountered in areas connected to rehabilitation, sports, children's motor skills, and so on. To carry out our functional specification, we develop an extraction system through which we analyse image sequences to identify gait features. Our prototype not only readily lets us determine the dynamic parameters (heel strike, toe off, stride length and time) and some skeleton joints but also satisfactorily supplies us with a proper distinction between normal and abnormal gait. We have performed experiments on a dataset of 30 samples.
Assuntos
Algoritmos , Marcha , Processamento de Sinais Assistido por Computador , Acelerometria , Fenômenos Biomecânicos , Humanos , FotografaçãoRESUMO
The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched.
Assuntos
Tecnologia sem Fio/instrumentação , Agricultura , Redes de Comunicação de Computadores , InternetRESUMO
Due to progress and demographic change, society is facing a crucial challenge related to increased life expectancy and a higher number of people in situations of dependency. As a consequence, there exists a significant demand for support systems for personal autonomy. This article outlines the vision@home project, whose goal is to extend independent living at home for elderly and impaired people, providing care and safety services by means of vision-based monitoring. Different kinds of ambient-assisted living services are supported, from the detection of home accidents, to telecare services. In this contribution, the specification of the system is presented, and novel contributions are made regarding human behaviour analysis and privacy protection. By means of a multi-view setup of cameras, people's behaviour is recognised based on human action recognition. For this purpose, a weighted feature fusion scheme is proposed to learn from multiple views. In order to protect the right to privacy of the inhabitants when a remote connection occurs, a privacy-by-context method is proposed. The experimental results of the behaviour recognition method show an outstanding performance, as well as support for multi-view scenarios and real-time execution, which are required in order to provide the proposed services.