Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
ALTEX ; 38(2): 289-306, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33313956

RESUMO

High attrition rates associated with drug testing in 2D cell culture and animal models stress the need for improved modeling of human tumor tissues. In previous studies, our 3D models on a decellularized tissue matrix have shown better predictivity and higher chemoresistance. A single porcine intestine yields material for 150 3D models of breast, lung, colorectal cancer (CRC) or leukemia. The uniquely preserved structure of the basement membrane enables physiological anchorage of endothelial cells and epithelial-derived carcinoma cells. The matrix provides different niches for cell growth: on top as monolayer, in crypts as aggregates, and within deeper layers. Dynamic culture in bioreactors enhances cell growth. Comparing gene expression between 2D and 3D cultures, we observed changes related to proliferation, apoptosis and stemness. For drug target predictions, we utilize tumor-specific sequencing data in our in silico model, finding an additive effect of metformin and gefitinib treatment for lung cancer in silico, validated in vitro. To analyze mode-of-action, immune therapies such as trispecific T-cell engagers in leukemia or toxicity on non-cancer cells, the model can be modularly enriched with human endothelial cells (hECs), immune cells and fibroblasts. Upon addition of hECs, transmigration of immune cells through the endothelial barrier can be investigated. In an allogenic CRC model, we observe a lower basic apoptosis rate after applying PBMCs in 3D compared to 2D, which offers new options to mirror antigen-specific immunotherapies in vitro. In conclusion, we present modular human 3D tumor models with tissue-like features for preclinical testing to reduce animal experiments.

2.
J Control Release ; 303: 162-180, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-30981815

RESUMO

Curcumin (CUR) is a natural extract from the plant Curcuma longa and part of turmeric, a spice and herbal remedy in traditional medicine. Thousands of papers claim a plethora of health benefits by CUR, but a growing number of reports and contributions caution that many experimental data may be artifacts or outright deny any suitability of CUR due to its problematic physicochemical properties. Two major issues often encountered with CUR are its extraordinarily low solubility in water and its limited chemical stability. Here, we report on a novel nanoformulation of CUR that enables CUR concentrations in water of at least 50 g/L with relative drug loadings of >50 wt% and high dose efficacy testing in 3D tumor models. Despite this high loading and concentration, the CUR nanoformulation comprises polymer-drug aggregates with a size <50 nm. Most interestingly, this is achieved using an amphiphilic block copolymer, that by itself does not form micelles due to its limited hydrophilic/lipophilic contrast. The ultra-high loaded nanoformulations exhibit a very good stability, reproducibility and redispersibility. In order to test effects of CUR in conditions closer to an in vivo situation, we utilized a 3D tumor test system based on a biological decellularized tissue matrix that better correlates to clinical results concerning drug testing. We found that in comparison to 2D culture, the invasively growing breast cancer cell line MDA-MB-231 requires high concentrations of CUR for tumor cell eradication in 3D. In addition, we supplemented a 3D colorectal cancer model of the malignant cell line SW480 with fibroblasts and observed also in this invasive tumor model with stroma components a decreased tumor cell growth after CUR application accompanied by a loss of cell-cell contacts within tumor cell clusters. In a flow bioreactor simulating cancer cell dissemination, nanoformulated CUR prevented SW480 cells from adhering to a collagen scaffold, suggesting an anti-metastatic potential of CUR. This offers a rationale that the presented ultra-high CUR-loaded nanoformulation may be considered a tool to harness the full therapeutic potential of CUR.


Assuntos
Antineoplásicos/administração & dosagem , Curcumina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Micelas , Nanopartículas/administração & dosagem , Animais , Antineoplásicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Curcumina/química , Portadores de Fármacos/química , Humanos , Nanopartículas/química , Suínos
3.
Cancers (Basel) ; 12(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861874

RESUMO

To improve and focus preclinical testing, we combine tumor models based on a decellularized tissue matrix with bioinformatics to stratify tumors according to stage-specific mutations that are linked to central cancer pathways. We generated tissue models with BRAF-mutant colorectal cancer (CRC) cells (HROC24 and HROC87) and compared treatment responses to two-dimensional (2D) cultures and xenografts. As the BRAF inhibitor vemurafenib is-in contrast to melanoma-not effective in CRC, we combined it with the EGFR inhibitor gefitinib. In general, our 3D models showed higher chemoresistance and in contrast to 2D a more active HGFR after gefitinib and combination-therapy. In xenograft models murine HGF could not activate the human HGFR, stressing the importance of the human microenvironment. In order to stratify patient groups for targeted treatment options in CRC, an in silico topology with different stages including mutations and changes in common signaling pathways was developed. We applied the established topology for in silico simulations to predict new therapeutic options for BRAF-mutated CRC patients in advanced stages. Our in silico tool connects genome information with a deeper understanding of tumor engines in clinically relevant signaling networks which goes beyond the consideration of single drivers to improve CRC patient stratification.

4.
JCI Insight ; 4(18)2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31415244

RESUMO

Solid tumors impose immunologic and physical barriers to the efficacy of chimeric antigen receptor (CAR) T cell therapy that are not reflected in conventional preclinical testing against singularized tumor cells in 2-dimensional culture. Here, we established microphysiologic three-dimensional (3D) lung and breast cancer models that resemble architectural and phenotypical features of primary tumors and evaluated the antitumor function of receptor tyrosine kinase-like orphan receptor 1-specific (ROR1-specific) CAR T cells. 3D tumors were established from A549 (non-small cell lung cancer) and MDA-MB-231 (triple-negative breast cancer) cell lines on a biological scaffold with intact basement membrane (BM) under static and dynamic culture conditions, which resulted in progressively increasing cell mass and invasive growth phenotype (dynamic > static; MDA-MB-231 > A549). Treatment with ROR1-CAR T cells conferred potent antitumor effects. In dynamic culture, CAR T cells actively entered arterial medium flow and adhered to and infiltrated the tumor mass. ROR1-CAR T cells penetrated deep into tumor tissue and eliminated multiple layers of tumor cells located above and below the BM. The microphysiologic 3D tumor models developed in this study are standardized, scalable test systems that can be used either in conjunction with or in lieu of animal testing to interrogate the antitumor function of CAR T cells and to obtain proof of concept for their safety and efficacy before clinical application.


Assuntos
Técnicas de Cultura de Células/métodos , Imunoterapia Adotiva/métodos , Neoplasias Pulmonares/terapia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/imunologia , Receptores de Antígenos Quiméricos/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Alternativas aos Testes com Animais , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Anticorpos de Cadeia Única/imunologia , Esferoides Celulares , Linfócitos T/imunologia , Linfócitos T/transplante , Neoplasias de Mama Triplo Negativas/imunologia
5.
Mol Oncol ; 12(8): 1264-1285, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29797762

RESUMO

Patient-tailored therapy based on tumor drivers is promising for lung cancer treatment. For this, we combined in vitro tissue models with in silico analyses. Using individual cell lines with specific mutations, we demonstrate a generic and rapid stratification pipeline for targeted tumor therapy. We improve in vitro models of tissue conditions by a biological matrix-based three-dimensional (3D) tissue culture that allows in vitro drug testing: It correctly shows a strong drug response upon gefitinib (Gef) treatment in a cell line harboring an EGFR-activating mutation (HCC827), but no clear drug response upon treatment with the HSP90 inhibitor 17AAG in two cell lines with KRAS mutations (H441, A549). In contrast, 2D testing implies wrongly KRAS as a biomarker for HSP90 inhibitor treatment, although this fails in clinical studies. Signaling analysis by phospho-arrays showed similar effects of EGFR inhibition by Gef in HCC827 cells, under both 2D and 3D conditions. Western blot analysis confirmed that for 3D conditions, HSP90 inhibitor treatment implies different p53 regulation and decreased MET inhibition in HCC827 and H441 cells. Using in vitro data (western, phospho-kinase array, proliferation, and apoptosis), we generated cell line-specific in silico topologies and condition-specific (2D, 3D) simulations of signaling correctly mirroring in vitro treatment responses. Networks predict drug targets considering key interactions and individual cell line mutations using the Human Protein Reference Database and the COSMIC database. A signature of potential biomarkers and matching drugs improve stratification and treatment in KRAS-mutated tumors. In silico screening and dynamic simulation of drug actions resulted in individual therapeutic suggestions, that is, targeting HIF1A in H441 and LKB1 in A549 cells. In conclusion, our in vitro tumor tissue model combined with an in silico tool improves drug effect prediction and patient stratification. Our tool is used in our comprehensive cancer center and is made now publicly available for targeted therapy decisions.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias Pulmonares/tratamento farmacológico , Engenharia Tecidual/métodos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Gefitinibe/farmacologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Terapia de Alvo Molecular/métodos , Mutação , Medicina de Precisão/métodos , Suínos
6.
J Vis Exp ; (110): e53885, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27077967

RESUMO

In the present study, we combined an in vitro 3D lung tumor model with an in silico model to optimize predictions of drug response based on a specific mutational background. The model is generated on a decellularized porcine scaffold that reproduces tissue-specific characteristics regarding extracellular matrix composition and architecture including the basement membrane. We standardized a protocol that allows artificial tumor tissue generation within 14 days including three days of drug treatment. Our article provides several detailed descriptions of 3D read-out screening techniques like the determination of the proliferation index Ki67 staining's, apoptosis from supernatants by M30-ELISA and assessment of epithelial to mesenchymal transition (EMT), which are helpful tools for evaluating the effectiveness of therapeutic compounds. We could show compared to 2D culture a reduction of proliferation in our 3D tumor model that is related to the clinical situation. Despite of this lower proliferation, the model predicted EGFR-targeted drug responses correctly according to the biomarker status as shown by comparison of the lung carcinoma cell lines HCC827 (EGFR -mutated, KRAS wild-type) and A549 (EGFR wild-type, KRAS-mutated) treated with the tyrosine-kinase inhibitor (TKI) gefitinib. To investigate drug responses of more advanced tumor cells, we induced EMT by long-term treatment with TGF-beta-1 as assessed by vimentin/pan-cytokeratin immunofluorescence staining. A flow-bioreactor was employed to adjust culture to physiological conditions, which improved tissue generation. Furthermore, we show the integration of drug responses upon gefitinib treatment or TGF-beta-1 stimulation - apoptosis, proliferation index and EMT - into a Boolean in silico model. Additionally, we explain how drug responses of tumor cells with a specific mutational background and counterstrategies against resistance can be predicted. We are confident that our 3D in vitro approach especially with its in silico expansion provides an additional value for preclinical drug testing in more realistic conditions than in 2D cell culture.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Quinazolinas/uso terapêutico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Ensaio de Imunoadsorção Enzimática , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores ErbB/genética , Gefitinibe , Humanos , Imageamento Tridimensional , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Suínos , Engenharia Tecidual , Fator de Crescimento Transformador beta1
7.
Mol Oncol ; 8(2): 351-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24388494

RESUMO

For the development of new treatment strategies against cancer, understanding signaling networks and their changes upon drug response is a promising approach to identify new drug targets and biomarker profiles. Pre-requisites are tumor models with multiple read-out options that accurately reflect the clinical situation. Tissue engineering technologies offer the integration of components of the tumor microenvironment which are known to impair drug response of cancer cells. We established three-dimensional (3D) lung carcinoma models on a decellularized tissue matrix, providing a complex microenvironment for cell growth. For model generation, we used two cell lines with (HCC827) or without (A549) an activating mutation of the epidermal growth factor receptor (EGFR), exhibiting different sensitivities to the EGFR inhibitor gefitinib. EGFR activation in HCC827 was inhibited by gefitinib, resulting in a significant reduction of proliferation (Ki-67 proliferation index) and in the induction of apoptosis (TUNEL staining, M30-ELISA). No significant effect was observed in conventional cell culture. Results from the 3D model correlated with the results of an in silico model that integrates the EGFR signaling network according to clinical data. The application of TGFß1 induced tumor cell invasion, accompanied by epithelial-mesenchymal transition (EMT) both in vitro and in silico. This was confirmed in the 3D model by acquisition of mesenchymal cell morphology and modified expression of fibronectin, E-cadherin, ß-catenin and mucin-1. Quantitative read-outs for proliferation, apoptosis and invasion were established in the complex 3D tumor model. The combined in vitro and in silico model represents a powerful tool for systems analysis.


Assuntos
Neoplasias Pulmonares/metabolismo , Modelos Biológicos , Microambiente Tumoral , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Gefitinibe , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA