Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Thromb Haemost ; 95(3): 462-8, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16525574

RESUMO

Soluble plasma tissue factor (TF) circulates in picomolar concentrations in healthy individuals and increases in a wide spectrum of diseases. This study tests the hypothesis that both truncated TF (rsTF) or soluble plasmaTF (pTF) in low concentration combine with monocytes or platelets to convert factorVII (fVII) to fVIIa. Both rsTF (33 kDa) and pTF (47 kDa), obtained from pericardial wounds of patients having cardiac surgery using cardiopulmonary bypass (CPB), were studied in association with blood cells and TF-bearing microparticles. Tissue factor was measured by ELISA. RsTF binds to erythrocytes, platelets, mononuclear cells and polymorphoneutrophils. The rate of fVII conversion with rsTF (1-10(3) nM) is highest with mononuclear cells, less with platelets, minimal with polymorphoneutrophils and undetectable with erythrocytes. Either stimulated or unstimulated mononuclear cells or platelets in the presence of 3.5 pM rsTF or pTF convert fVII (10 pM) [corrected] to fVIIa, but the amounts of fVIIa produced differ. When leukocytes or platelets are absent, microparticles associated with 3.5 pM TF antigen derived from pericardial wound plasma do not activate fVII. Stimulated mononuclear cells convert nearly all available fVII (10 nM) to fVIIa with 3.5 nM pTF; unstimulated mononuclear cells convert small amounts of fVII with 1 pM rsTF. In all comparisons mononuclear cells more efficiently convert fVII to fVIIa than do platelets. This study shows that stimulated mononuclear cells provide the most efficient platform for activation of rsTF or pTF at low concentrations of TF antigen.


Assuntos
Fator VIIa/metabolismo , Monócitos/efeitos dos fármacos , Tromboplastina/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Cinética , Monócitos/metabolismo , Fragmentos de Peptídeos/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Tromboplastina/química , Tromboplastina/genética
2.
Biochemistry ; 41(6): 2014-21, 2002 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-11827548

RESUMO

Two highly homologous dimeric disintegrins, CC5 and CC8, have been isolated from the venom of the North African sand viper Cerastes cerastes. CC5 is a homodimer containing an RGD motif in its subunits. CC8 is a heterodimer. The CC8A and CC8B subunits contain RGD and WGD tripeptide sequence in their respective integrin-binding loops. Both CC5 and CC8 inhibited platelet aggregation and the adhesion of cells expressing integrins alphaII(b)beta3, alpha(v)beta3, and alpha5beta1 to appropriate ligands. However, the inhibitory activity of CC8 was at least 1 order of magnitude higher than that of CC5. Enhanced activity of CC8 over CC5 was also observed in the induction of LIBS epitopes on beta1 and beta3 integrins. Synthetic peptides in which the arginyl residue of the RGD motif had been replaced with tryptophans exhibited increased inhibitory activity toward integrins alpha5beta1, alphaII(b)beta3, and alpha(v)beta3. Moreover, alanine substitution of the aspartic acid of the WGD motif of these peptides decreased their inhibitory ability, whereas the same substitution in the RGD sequence almost completely abolished the activity of the peptides. We conclude that the WGD motif enhances the inhibitory activity of disintegrins toward alphaII(b)beta3, alpha(v)beta3, and alpha5beta1 integrins.


Assuntos
Desintegrinas/química , Desintegrinas/farmacologia , Integrinas/antagonistas & inibidores , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Dimerização , Desintegrinas/genética , Humanos , Técnicas In Vitro , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/antagonistas & inibidores , Subunidades Proteicas , Receptores de Fibronectina/antagonistas & inibidores , Receptores de Vitronectina/antagonistas & inibidores , Proteínas Recombinantes/antagonistas & inibidores , Venenos de Víboras/química
3.
Blood ; 104(10): 3173-80, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14764524

RESUMO

The platelet-specific chemokine platelet factor 4 (PF4) is released in large amounts at sites of vascular injury. PF4 binds to heparin with high affinity, but its in vivo biologic role has not been defined. We studied the role of PF4 in thrombosis using heterozygote and homozygote PF4 knock-out mice (mPF4(+/-) and mPF4(-/-), respectively) and transgenic mice overexpressing human PF4 (hPF4(+)). None of these lines had an overt bleeding diathesis, but in a FeCl(3) carotid artery thrombosis model, all showed impaired thrombus formation. This defect in thrombus formation in the mPF4(-/-) animals was corrected by infusing hPF4 over a narrow concentration range. The thrombotic defect in the mPF4(+/-) and mPF4(-/-) animals was particularly sensitive to infusions of the negatively charged anticoagulant heparin. However, the same amount of heparin paradoxically normalized thrombus formation in the hPF4(+) animals, although these animals were anticoagulated systemically. Upon infusion of the positively charged protein, protamine sulfate, the reverse was observed with mPF4(+/-) and mPF4(-/-) animals having improved thrombosis, with the hPF4(+) animals having worsened thrombus formation. These studies support an important role for PF4 in thrombosis, and show that neutralization of PF4 is an important component of heparin's anticoagulant effect. The mechanisms underlying these observations of PF4 biology and their clinical implications remain to be determined.


Assuntos
Anticoagulantes/farmacologia , Heparina de Baixo Peso Molecular/farmacologia , Fator Plaquetário 4/genética , Fator Plaquetário 4/metabolismo , Trombose/fisiopatologia , Animais , Fibrinolíticos/farmacologia , Antagonistas de Heparina/farmacologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ativação Plaquetária/fisiologia , Protaminas/farmacologia , Trombose/tratamento farmacológico , Trombose/prevenção & controle
4.
Exp Cell Res ; 292(2): 371-84, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14697344

RESUMO

The effects of jarastatin (JT), a monomeric RGD-disintegrin, were compared with those of the heterodimeric MLD-disintegrin, EC3, on human neutrophil activation and functions. Both disintegrins inhibited neutrophil chemotaxis induced by fMet-Leu-Phe and were also potent chemotactic agents. These effects were accompanied by an increase in actin polymerization, and both were inhibited by genistein, a tyrosine kinase inhibitor. While JT, but not other RGD-disintegrins, inhibited EC3-induced chemotaxis, EC3 was not able to inhibit JT effect. The chemotactic effect of JT was blocked by anti-alpha(M) antibody whereas anti-alpha(9)beta(1) inhibited EC3 effect. Both JT and EC3 induced focal adhesion kinase (FAK) and phosphoinositide 3-kinase (PI3K) activation. Accordingly, LY294002, a PI3K inhibitor, impaired their chemotactic effect on neutrophils. JT induced Erk-2 translocation to nucleus and a delay of the spontaneous apoptosis of neutrophils in vitro. In contrast, EC3 inhibited Erk-2 activation and had a proapoptotic effect. These effects were reverted by PD98059, an MEK 1/2 inhibitor and blocked by z-VAD-FMK, a caspase inhibitor. In addition, JT, but not EC3, increased the IL-8 mRNA levels in neutrophils. The data indicate that JT and EC3 directly activate an integrin-coupled signaling and modulate the MAPK pathway in different ways, leading the neutrophils to express different functional response.


Assuntos
Membrana Celular/metabolismo , Quimiotaxia de Leucócito/efeitos dos fármacos , Desintegrinas/farmacologia , Integrinas/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Venenos de Víboras/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Anticorpos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Extratos Celulares , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Quimiotaxia de Leucócito/fisiologia , Desintegrinas/antagonistas & inibidores , Interações Medicamentosas/fisiologia , Inibidores Enzimáticos/farmacologia , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Integrinas/metabolismo , Interleucina-8/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Neutrófilos/metabolismo , Fragmentos de Peptídeos/farmacologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA