Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 98(1): 149-64, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26748517

RESUMO

Intellectual disability (ID) disorders are genetically and phenotypically extremely heterogeneous. Can this complexity be depicted in a comprehensive way as a means of facilitating the understanding of ID disorders and their underlying biology? We provide a curated database of 746 currently known genes, mutations in which cause ID (ID-associated genes [ID-AGs]), classified according to ID manifestation and associated clinical features. Using this integrated resource, we show that ID-AGs are substantially enriched with co-expression, protein-protein interactions, and specific biological functions. Systematic identification of highly enriched functional themes and phenotypes revealed typical phenotype combinations characterizing process-defined groups of ID disorders, such as chromatin-related disorders and deficiencies in DNA repair. Strikingly, phenotype classification efficiently breaks down ID-AGs into subsets with significantly elevated biological coherence and predictive power. Custom-made functional Drosophila datasets revealed further characteristic phenotypes among ID-AGs and specific clinical classes. Our study and resource provide systematic insights into the molecular and clinical landscape of ID disorders, represent a significant step toward overcoming current limitations in ID research, and prove the utility of systematic human and cross-species phenomics analyses in highly heterogeneous genetic disorders.


Assuntos
Deficiência Intelectual/genética , Mutação , Fenótipo , Animais , Drosophila/genética , Humanos
2.
PLoS Genet ; 12(5): e1006022, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27166630

RESUMO

Here we report a stop-mutation in the BOD1 (Biorientation Defective 1) gene, which co-segregates with intellectual disability in a large consanguineous family, where individuals that are homozygous for the mutation have no detectable BOD1 mRNA or protein. The BOD1 protein is required for proper chromosome segregation, regulating phosphorylation of PLK1 substrates by modulating Protein Phosphatase 2A (PP2A) activity during mitosis. We report that fibroblast cell lines derived from homozygous BOD1 mutation carriers show aberrant localisation of the cell cycle kinase PLK1 and its phosphatase PP2A at mitotic kinetochores. However, in contrast to the mitotic arrest observed in BOD1-siRNA treated HeLa cells, patient-derived cells progressed through mitosis with no apparent segregation defects but at an accelerated rate compared to controls. The relatively normal cell cycle progression observed in cultured cells is in line with the absence of gross structural brain abnormalities in the affected individuals. Moreover, we found that in normal adult brain tissues BOD1 expression is maintained at considerable levels, in contrast to PLK1 expression, and provide evidence for synaptic localization of Bod1 in murine neurons. These observations suggest that BOD1 plays a cell cycle-independent role in the nervous system. To address this possibility, we established two Drosophila models, where neuron-specific knockdown of BOD1 caused pronounced learning deficits and significant abnormalities in synapse morphology. Together our results reveal novel postmitotic functions of BOD1 as well as pathogenic mechanisms that strongly support a causative role of BOD1 deficiency in the aetiology of intellectual disability. Moreover, by demonstrating its requirement for cognitive function in humans and Drosophila we provide evidence for a conserved role of BOD1 in the development and maintenance of cognitive features.


Assuntos
Proteínas de Ciclo Celular/genética , Cognição , Proteína Fosfatase 2/genética , Sinapses/genética , Animais , Segregação de Cromossomos/genética , Drosophila/genética , Drosophila/fisiologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Aprendizagem , Camundongos , Mitose/genética , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Sinapses/patologia , Quinase 1 Polo-Like
3.
PLoS Comput Biol ; 12(3): e1004823, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26998933

RESUMO

The morphology of synapses is of central interest in neuroscience because of the intimate relation with synaptic efficacy. Two decades of gene manipulation studies in different animal models have revealed a repertoire of molecules that contribute to synapse development. However, since such studies often assessed only one, or at best a few, morphological features at a given synapse, it remained unaddressed how different structural aspects relate to one another. Furthermore, such focused and sometimes only qualitative approaches likely left many of the more subtle players unnoticed. Here, we present the image analysis algorithm 'Drosophila_NMJ_Morphometrics', available as a Fiji-compatible macro, for quantitative, accurate and objective synapse morphometry of the Drosophila larval neuromuscular junction (NMJ), a well-established glutamatergic model synapse. We developed this methodology for semi-automated multiparametric analyses of NMJ terminals immunolabeled for the commonly used markers Dlg1 and Brp and showed that it also works for Hrp, Csp and Syt. We demonstrate that gender, genetic background and identity of abdominal body segment consistently and significantly contribute to variability in our data, suggesting that controlling for these parameters is important to minimize variability in quantitative analyses. Correlation and principal component analyses (PCA) were performed to investigate which morphometric parameters are inter-dependent and which ones are regulated rather independently. Based on nine acquired parameters, we identified five morphometric groups: NMJ size, geometry, muscle size, number of NMJ islands and number of active zones. Based on our finding that the parameters of the first two principal components hardly correlated with each other, we suggest that different molecular processes underlie these two morphometric groups. Our study sets the stage for systems morphometry approaches at the well-studied Drosophila NMJ.


Assuntos
Algoritmos , Bases de Dados Factuais , Drosophila/citologia , Interpretação de Imagem Assistida por Computador/métodos , Modelos Neurológicos , Junção Neuromuscular/citologia , Animais , Mineração de Dados , Modelos Anatômicos
4.
PLoS Genet ; 9(10): e1003911, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204314

RESUMO

Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules.


Assuntos
Olho/metabolismo , Deficiência Intelectual/genética , Redes e Vias Metabólicas/genética , Sinapses/genética , Animais , Animais Geneticamente Modificados , Drosophila/genética , Olho/crescimento & desenvolvimento , Técnicas de Silenciamento de Genes , Variação Genética , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Neurônios/metabolismo , Fenótipo , Interferência de RNA , Sinapses/metabolismo
5.
Hum Mol Genet ; 22(10): 1960-70, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23390136

RESUMO

AnkyrinG, encoded by the ANK3 gene, is involved in neuronal development and signaling. It has previously been implicated in bipolar disorder and schizophrenia by association studies. Most recently, de novo missense mutations in this gene were identified in autistic patients. However, the causative nature of these mutations remained controversial. Here, we report inactivating mutations in the Ankyrin 3 (ANK3) gene in patients with severe cognitive deficits. In a patient with a borderline intelligence, severe attention deficit hyperactivity disorder (ADHD), autism and sleeping problems, all isoforms of the ANK3 gene, were disrupted by a balanced translocation. Furthermore, in a consanguineous family with moderate intellectual disability (ID), an ADHD-like phenotype and behavioral problems, we identified a homozygous truncating frameshift mutation in the longest isoform of the same gene, which represents the first reported familial mutation in the ANK3 gene. The causality of ANK3 mutations in the two families and the role of the gene in cognitive function were supported by memory defects in a Drosophila knockdown model. Thus we demonstrated that ANK3 plays a role in intellectual functioning. In addition, our findings support the suggested association of ANK3 with various neuropsychiatric disorders and illustrate the genetic and molecular relation between a wide range of neurodevelopmental disorders.


Assuntos
Anquirinas/genética , Mutação da Fase de Leitura , Heterozigoto , Homozigoto , Transtornos Mentais/genética , Neurogênese/genética , Transtornos do Sono-Vigília/genética , Adulto , Animais , Modelos Animais de Doenças , Drosophila melanogaster , Feminino , Técnicas de Silenciamento de Genes , Humanos , Lactente , Masculino
6.
Hum Mol Genet ; 22(15): 3138-51, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23575228

RESUMO

It is estimated that the human mitochondrial proteome consists of 1000-1500 distinct proteins. The majority of these support the various biochemical pathways that are active in these organelles. Individuals with an oxidative phosphorylation disorder of unknown cause provide a unique opportunity to identify novel genes implicated in mitochondrial biology. We identified a homozygous deletion of CEP89 in a patient with isolated complex IV deficiency, intellectual disability and multisystemic problems. CEP89 is a ubiquitously expressed and highly conserved gene of unknown function. Immunocytochemistry and cellular fractionation experiments showed that CEP89 is present both in the cytosol and in the mitochondrial intermembrane space. Furthermore, we ascertained in vitro that downregulation of CEP89 resulted in a severe decrease in complex IV in-gel activity and altered mobility, suggesting that the complex is aberrantly formed. Two-dimensional BN-SDS gel analysis revealed that CEP89 associates with a high-molecular weight complex. Together, these data confirm a role for CEP89 in mitochondrial metabolism. In addition, we modeled CEP89 loss of function in Drosophila. Ubiquitous knockdown of fly Cep89 decreased complex IV activity and resulted in complete lethality. Furthermore, Cep89 is required for mitochondrial integrity, membrane depolarization and synaptic transmission of photoreceptor neurons, and for (sub)synaptic organization of the larval neuromuscular junction. Finally, we tested neuronal Cep89 knockdown flies in the light-off jump reflex habituation assay, which revealed its role in learning. We conclude that CEP89 proteins play an important role in mitochondrial metabolism, especially complex IV activity, and are required for neuronal and cognitive function across evolution.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Criança , Cromossomos Humanos Par 19 , Deficiência de Citocromo-c Oxidase/genética , Deficiência de Citocromo-c Oxidase/metabolismo , Citosol , Modelos Animais de Doenças , Drosophila/genética , Proteínas de Drosophila/genética , Feminino , Deleção de Genes , Expressão Gênica , Técnicas de Silenciamento de Genes , Homozigoto , Humanos , Aprendizagem , Proteínas Associadas aos Microtúbulos , Mitocôndrias/genética , Mutação , Especificidade de Órgãos/genética , Polimorfismo de Nucleotídeo Único , Transporte Proteico , Sinapses/genética , Sinapses/metabolismo
7.
Am J Hum Genet ; 91(6): 1073-81, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23176823

RESUMO

We report on four families affected by a clinical presentation of complex hereditary spastic paraplegia (HSP) due to recessive mutations in DDHD2, encoding one of the three mammalian intracellular phospholipases A(1) (iPLA(1)). The core phenotype of this HSP syndrome consists of very early-onset (<2 years) spastic paraplegia, intellectual disability, and a specific pattern of brain abnormalities on cerebral imaging. An essential role for DDHD2 in the human CNS, and perhaps more specifically in synaptic functioning, is supported by a reduced number of active zones at synaptic terminals in Ddhd-knockdown Drosophila models. All identified mutations affect the protein's DDHD domain, which is vital for its phospholipase activity. In line with the function of DDHD2 in lipid metabolism and its role in the CNS, an abnormal lipid peak indicating accumulation of lipids was detected with cerebral magnetic resonance spectroscopy, which provides an applicable diagnostic biomarker that can distinguish the DDHD2 phenotype from other complex HSP phenotypes. We show that mutations in DDHD2 cause a specific complex HSP subtype (SPG54), thereby linking a member of the PLA(1) family to human neurologic disease.


Assuntos
Genes Recessivos , Mutação , Fosfolipases/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Sequência de Bases , Sistema Nervoso Central/patologia , Criança , Pré-Escolar , Fácies , Feminino , Ordem dos Genes , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/diagnóstico , Adulto Jovem
8.
Am J Med Genet B Neuropsychiatr Genet ; 168(6): 492-507, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26061966

RESUMO

Attention-Deficit/Hyperactivity Disorder (ADHD) is a common neuropsychiatric disorder with a complex genetic background. The G protein-coupled receptor kinase interacting ArfGAP 1 (GIT1) gene was previously associated with ADHD. We aimed at replicating the association of GIT1 with ADHD and investigated its role in cognitive and brain phenotypes. Gene-wide and single variant association analyses for GIT1 were performed for three cohorts: (1) the ADHD meta-analysis data set of the Psychiatric Genomics Consortium (PGC, N = 19,210), (2) the Dutch cohort of the International Multicentre persistent ADHD CollaboraTion (IMpACT-NL, N = 225), and (3) the Brain Imaging Genetics cohort (BIG, N = 1,300). Furthermore, functionality of the rs550818 variant as an expression quantitative trait locus (eQTL) for GIT1 was assessed in human blood samples. By using Drosophila melanogaster as a biological model system, we manipulated Git expression according to the outcome of the expression result and studied the effect of Git knockdown on neuronal morphology and locomotor activity. Association of rs550818 with ADHD was not confirmed, nor did a combination of variants in GIT1 show association with ADHD or any related measures in either of the investigated cohorts. However, the rs550818 risk-genotype did reduce GIT1 expression level. Git knockdown in Drosophila caused abnormal synapse and dendrite morphology, but did not affect locomotor activity. In summary, we could not confirm GIT1 as an ADHD candidate gene, while rs550818 was found to be an eQTL for GIT1. Despite GIT1's regulation of neuronal morphology, alterations in gene expression do not appear to have ADHD-related behavioral consequences. © 2015 Wiley Periodicals, Inc.

9.
J Med Genet ; 50(8): 507-14, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23644463

RESUMO

BACKGROUND: GATA zinc finger domain containing 2B (GATAD2B) encodes a subunit of the MeCP1-Mi-2/nucleosome remodelling and deacetylase complex involved in chromatin modification and regulation of transcription. We recently identified two de novo loss-of-function mutations in GATAD2B by whole exome sequencing in two unrelated individuals with severe intellectual disability. METHODS: To identify additional individuals with GATAD2B aberrations, we searched for microdeletions overlapping with GATAD2B in inhouse and international databases, and performed targeted Sanger sequencing of the GATAD2B locus in a selected cohort of 80 individuals based on an overlap with the clinical features in the two index cases. To address whether GATAD2B is required directly in neurones for cognition and neuronal development, we investigated the role of Drosophila GATAD2B orthologue simjang (simj) in learning and synaptic connectivity. RESULTS: We identified a third individual with a 240 kb microdeletion encompassing GATAD2B and a fourth unrelated individual with GATAD2B loss-of-function mutation. Detailed clinical description showed that all four individuals with a GATAD2B aberration had a distinctive phenotype with childhood hypotonia, severe intellectual disability, limited speech, tubular shaped nose with broad nasal tip, short philtrum, sparse hair and strabismus. Neuronal knockdown of Drosophila GATAD2B orthologue, simj, resulted in impaired learning and altered synapse morphology. CONCLUSIONS: We hereby define a novel clinically recognisable intellectual disability syndrome caused by loss-of-function of GATAD2B. Our results in Drosophila suggest that GATAD2B is required directly in neurones for normal cognitive performance and synapse development.


Assuntos
Drosophila/genética , Fatores de Transcrição GATA/genética , Deficiência Intelectual/genética , Deficiências da Aprendizagem/genética , Mutação , Sinapses/metabolismo , Animais , Sequência de Bases , Criança , Deleção Cromossômica , Variações do Número de Cópias de DNA , Drosophila/metabolismo , Drosophila/ultraestrutura , Feminino , Humanos , Dados de Sequência Molecular , Neurônios/metabolismo , Proteínas Repressoras , Sinapses/genética , Síndrome
10.
J Vis Exp ; (123)2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28518121

RESUMO

Synaptic morphology is tightly related to synaptic efficacy, and in many cases morphological synapse defects ultimately lead to synaptic malfunction. The Drosophila larval neuromuscular junction (NMJ), a well-established model for glutamatergic synapses, has been extensively studied for decades. Identification of mutations causing NMJ morphological defects revealed a repertoire of genes that regulate synapse development and function. Many of these were identified in large-scale studies that focused on qualitative approaches to detect morphological abnormalities of the Drosophila NMJ. A drawback of qualitative analyses is that many subtle players contributing to NMJ morphology likely remain unnoticed. Whereas quantitative analyses are required to detect the subtler morphological differences, such analyses are not yet commonly performed because they are laborious. This protocol describes in detail two image analysis algorithms "Drosophila NMJ Morphometrics" and "Drosophila NMJ Bouton Morphometrics", available as Fiji-compatible macros, for quantitative, accurate and objective morphometric analysis of the Drosophila NMJ. This methodology is developed to analyze NMJ terminals immunolabeled with the commonly used markers Dlg-1 and Brp. Additionally, its wider application to other markers such as Hrp, Csp and Syt is presented in this protocol. The macros are able to assess nine morphological NMJ features: NMJ area, NMJ perimeter, number of boutons, NMJ length, NMJ longest branch length, number of islands, number of branches, number of branching points and number of active zones in the NMJ terminal.


Assuntos
Algoritmos , Drosophila/ultraestrutura , Ensaios de Triagem em Larga Escala/métodos , Junção Neuromuscular/ultraestrutura , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Processamento de Imagem Assistida por Computador , Larva , Terminações Pré-Sinápticas/ultraestrutura , Software , Sinapses/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
11.
Dis Model Mech ; 10(2): 105-118, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28067622

RESUMO

A consanguineous family from Pakistan was ascertained to have a novel deafness-dystonia syndrome with motor regression, ichthyosis-like features and signs of sensory neuropathy. By applying a combined strategy of linkage analysis and whole-exome sequencing in the presented family, a homozygous nonsense mutation, c.4G>T (p.Glu2*), in FITM2 was identified. FITM2 and its paralog FITM1 constitute an evolutionary conserved protein family involved in partitioning of triglycerides into cellular lipid droplets. Despite the role of FITM2 in neutral lipid storage and metabolism, no indications for lipodystrophy were observed in the affected individuals. In order to obtain independent evidence for the involvement of FITM2 in the human pathology, downregulation of the single Fitm ortholog, CG10671, in Drosophila melanogaster was pursued using RNA interference. Characteristics of the syndrome, including progressive locomotor impairment, hearing loss and disturbed sensory functions, were recapitulated in Drosophila, which supports the causative nature of the FITM2 mutation. Mutation-based genetic counseling can now be provided to the family and insight is obtained into the potential impact of genetic variation in FITM2.


Assuntos
Surdocegueira/genética , Proteínas de Drosophila/genética , Distonia/genética , Ictiose/genética , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Atividade Motora , Mutação/genética , Atrofia Óptica/genética , Células Receptoras Sensoriais/patologia , Adiposidade , Animais , Audiometria de Tons Puros , Sequência de Bases , Criança , Códon sem Sentido/genética , Surdocegueira/sangue , Surdocegueira/fisiopatologia , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Distonia/sangue , Distonia/fisiopatologia , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Perda Auditiva/genética , Homozigoto , Humanos , Ictiose/complicações , Ictiose/fisiopatologia , Deficiência Intelectual/sangue , Deficiência Intelectual/fisiopatologia , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Locomoção , Masculino , Proteínas de Membrana/metabolismo , Atrofia Óptica/sangue , Atrofia Óptica/fisiopatologia , Linhagem , Sequenciamento do Exoma , Adulto Jovem
12.
Neurosci Biobehav Rev ; 46 Pt 2: 326-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24661984

RESUMO

The number of genes known to cause human monogenic diseases is increasing rapidly. For the extremely large, genetically and phenotypically heterogeneous group of intellectual disability (ID) disorders, more than 600 causative genes have been identified to date. However, knowledge about the molecular mechanisms and networks disrupted by these genetic aberrations is lagging behind. The fruit fly Drosophila has emerged as a powerful model organism to close this knowledge gap. This review summarizes recent achievements that have been made in this model and envisions its future contribution to our understanding of ID genetics and neuropathology. The available resources and efficiency of Drosophila place it in a position to tackle the main challenges in the field: mapping functional modules of ID genes to provide conceptually novel insights into the genetic control of cognition, tailored functional studies to improve 'next-generation' diagnostics, and identification of reversible ID phenotypes and medication. Drosophila's behavioral repertoire and powerful genetics also open up perspectives for modeling genetically complex forms of ID and neuropsychiatric disorders, which overlap in their genetic etiologies. In conclusion, Drosophila provides many opportunities to advance future medical genomics of early onset cognitive disorders.


Assuntos
Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/metabolismo , Terapia de Alvo Molecular/métodos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
13.
Front Neurosci ; 8: 394, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538548

RESUMO

Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impaired social interaction and communication, and restricted behavior and interests. A disruption in the balance of excitatory and inhibitory neurotransmission has been hypothesized to underlie these disorders. Here we demonstrate that genes of both pathways are affected by ASD, and that gene expression of inhibitory and excitatory genes is altered in the cerebral cortex of adult but not younger autistic individuals. We have developed a measure for the difference in the level of excitation and inhibition based on gene expression and observe that in this measure inhibition is decreased relative to excitation in adult ASD compared to control. This difference was undetectable in young autistic brains. Given that many psychiatric features of autism are already present at an early age, this suggests that the observed imbalance in gene expression is an aging phenomenon in ASD rather than its underlying cause.

14.
PLoS One ; 8(11): e81791, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24303071

RESUMO

We recently reported that duplication of the E3 ubiquitin ligase HUWE1 results in intellectual disability (ID) in male patients. However, the underlying molecular mechanism remains unknown. We used Drosophila melanogaster as a model to investigate the effect of increased HUWE1 levels on the developing nervous system. Similar to the observed levels in patients we overexpressed the HUWE1 mRNA about 2-fold in the fly. The development of the mushroom body and neuromuscular junctions were not altered, and basal neurotransmission was unaffected. These data are in agreement with normal learning and memory in the courtship conditioning paradigm. However, a disturbed branching phenotype at the axon terminals of the dorsal cluster neurons (DCN) was detected. Interestingly, overexpression of HUWE1 was found to decrease the protein levels of dishevelled (dsh) by 50%. As dsh as well as Fz2 mutant flies showed the same disturbed DCN branching phenotype, and the constitutive active homolog of ß-catenin, armadillo, could partially rescue this phenotype, our data strongly suggest that increased dosage of HUWE1 compromises the Wnt/ß-catenin pathway possibly by enhancing the degradation of dsh.


Assuntos
Axônios/metabolismo , Deficiência Intelectual/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila , Expressão Gênica , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Aprendizagem , Memória , Corpos Pedunculados/metabolismo , Corpos Pedunculados/fisiopatologia , Junção Neuromuscular/metabolismo , Neurônios/metabolismo , Transmissão Sináptica , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA