RESUMO
Vanadium dioxide (VO2) has been proposed as a phase-change material in tunable photonic and optoelectronic devices. In such devices, a thin layer of VO2 is typically deposited on metallic or insulating surfaces. In this Letter, we report the reflectance spectra of a subwavelength structure consisting of a thin layer of VO2 deposited on a gold film in the near-infrared spectral range, particularly near the wavelength of 1550â nm, which is significant for telecommunication applications. Our results indicate that in the insulating phase of VO2, the air/VO2/Au structure can be considered as a Gires-Tournois resonant cavity whose maximum absorption wavelength can be tuned by adjusting the thickness of the VO2 layer. In contrast, in the metallic phase of VO2, the reflectance of the structure increases by an amount of the order of a few tens of units. The proposed structure can prospectively lead to new design concepts in tunable photonic and optoelectronic devices.