Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1295994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116530

RESUMO

Diatoms (Bacillariophyceae) are aquatic photosynthetic microalgae with an ecological role as primary producers in the aquatic food web. They account substantially for global carbon, nitrogen, and silicon cycling. Elucidating the chemical space of diatoms is crucial to understanding their physiology and ecology. To expand the known chemical space of a cosmopolitan marine diatom, Skeletonema marinoi, we performed High-Resolution Liquid Chromatography-Tandem Mass Spectrometry (LC-MS2) for untargeted metabolomics data acquisition. The spectral data from LC-MS2 was used as input for the Metabolome Annotation Workflow (MAW) to obtain putative annotations for all measured features. A suspect list of metabolites previously identified in the Skeletonema spp. was generated to verify the results. These known metabolites were then added to the putative candidate list from LC-MS2 data to represent an expanded catalog of 1970 metabolites estimated to be produced by S. marinoi. The most prevalent chemical superclasses, based on the ChemONT ontology in this expanded dataset, were organic acids and derivatives, organoheterocyclic compounds, lipids and lipid-like molecules, and organic oxygen compounds. The metabolic profile from this study can aid the bioprospecting of marine microalgae for medicine, biofuel production, agriculture, and environmental conservation. The proposed analysis can be applicable for assessing the chemical space of other microalgae, which can also provide molecular insights into the interaction between marine organisms and their role in the functioning of ecosystems.

2.
Phytochemistry ; 201: 113267, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35671808

RESUMO

Microalgae are important primary producers and form the basis for the marine food web. As global climate changes, so do salinity levels that algae are exposed to. A metabolic response of algal cells partly alleviates the resulting osmotic stress. Some metabolites involved in the response are well studied, but the full metabolic implications of adaptation remain unclear. Improved analytical methodology provides an opportunity for additional insight. We can now follow responses to stress in major parts of the metabolome and derive comprehensive charts of the resulting metabolic re-wiring. In this study, we subjected three species of diatoms to high salinity conditions and compared their metabolome to controls in an untargeted manner. The three well-investigated species with sequenced genomes Phaeodactylum tricornutum, Thalassiosira pseudonana, and Skeletonema marinoi were selected for our survey. The microalgae react to salinity stress with common adaptations in the metabolome by amino acid up-regulation, production of saccharides, and inositols. But also species-specific dysregulation of metabolites is common. Several metabolites previously not connected with osmotic stress reactions are identified, including 4-hydroxyproline, pipecolinic acid, myo-inositol, threonic acid, and acylcarnitines. This expands our knowledge about osmoadaptation and calls for further functional characterization of metabolites and pathways in algal stress physiology.


Assuntos
Diatomáceas , Microalgas , Aclimatação , Diatomáceas/metabolismo , Metaboloma , Salinidade
3.
Genes (Basel) ; 10(7)2019 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-31284605

RESUMO

A conspicuous cell-shape phenotype known as "screwy" was reported to result from mutations at two or three uncharacterized loci in the ciliate Paramecium tetraurelia. Here, we describe a new screwy mutation, Spinning Top, which appeared spontaneously in the cross of an unrelated mutant with reference strain 51. The macronuclear (MAC) genome of the Spinning Top mutant is shown to lack a ~28.5-kb segment containing 18 genes at the end of one chromosome, which appears to result from a collinear deletion in the micronuclear (MIC) genome. We tested several candidate genes from the deleted locus by dsRNA-induced silencing in wild-type cells, and identified a single gene responsible for the phenotype. This gene, named Spade, encodes a 566-aa glutamine-rich protein with a C2HC zinc finger. Its silencing leads to a fast phenotype switch during vegetative growth, but cells recover a wild-type phenotype only 5-6 divisions after silencing is stopped. We analyzed 5 independently-obtained mutant alleles of the Sc1 locus, and concluded that all of them also lack the Spade gene and a number of neighboring genes in the MAC and MIC genomes. Mapping of the MAC deletion breakpoints revealed two different positions among the 5 alleles, both of which differ from the Spinning Top breakpoint. These results suggest that this MIC chromosome region is intrinsically unstable in strain 51.


Assuntos
Genes de Protozoários , Paramecium tetraurellia/genética , Proteínas de Protozoários/genética , Fragilidade Cromossômica , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA