Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Physiol ; 600(10): 2293-2309, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35377950

RESUMO

Recently, studies have emerged suggesting that the skin plays a role as major Na+ reservoir via regulation of the content of glycosaminoglycans and osmotic gradients. We investigated whether there were electrolyte gradients in skin and where Na+ could be stored to be inactivated from a fluid balance viewpoint. Na+ accumulation was induced in rats by a high salt diet (HSD) (8% NaCl and 1% saline to drink) or by implantation of a deoxycorticosterone acetate (DOCA) tablet (1% saline to drink) using rats on a low salt diet (LSD) (0.1% NaCl) on tap water as control. Na+ and K+ were assessed by ion chromatography in tissue eluates, and the extracellular volume by equilibration of 51 Cr-EDTA. By tangential sectioning of the skin, we found a low Na+ content and extracellular volume in epidermis, both parameters rising by ∼30% and 100%, respectively, in LSD and even more in HSD and DOCA when entering dermis. We found evidence for an extracellular Na+ gradient from epidermis to dermis shown by an estimated concentration in epidermis ∼2 and 4-5 times that of dermis in HSD and DOCA-salt. There was intracellular storage of Na+ in skin, muscle, and myocardium without a concomitant increase in hydration. Our data suggest that there is a hydration-dependent high interstitial fluid Na+ concentration that will contribute to the skin barrier and thus be a mechanism for limiting water loss. Salt stress results in intracellular storage of Na+ in exchange with K+ in skeletal muscle and myocardium that may have electromechanical consequences. KEY POINTS: Studies have suggested that Na+ can be retained or removed without commensurate water retention or loss, and that the skin plays a role as major Na+ reservoir via regulation of the content of glycosaminoglycans and osmotic gradients. In the present study, we investigated whether there were electrolyte gradients in skin and where Na+ could be stored to be inactivated from a fluid balance viewpoint. We used two common models for salt-sensitive hypertension: high salt and a deoxycorticosterone salt diet. We found a hydration-dependent high interstitial fluid Na+ concentration that will contribute to the skin barrier and thus be a mechanism for limiting water loss. There was intracellular Na+ storage in muscle and myocardium without a concomitant increase in hydration, comprising storage that may have electromechanical consequences in salt stress.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Animais , Ratos , Pressão Sanguínea/fisiologia , Desoxicorticosterona/farmacologia , Eletrólitos , Glicosaminoglicanos , Íons , Ratos Sprague-Dawley , Sódio , Cloreto de Sódio , Água
2.
Arterioscler Thromb Vasc Biol ; 38(9): 2054-2064, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30354256

RESUMO

Objective- A commonly accepted pivotal mechanism in fluid volume and blood pressure regulation is the parallel relationship between body Na+ and extracellular fluid content. Several recent studies have, however, shown that a considerable amount of Na+ can be retained in skin without commensurate water retention. Here, we asked whether a salt accumulation shown to result in VEGF (vascular endothelial growth factor)-C secretion and lymphangiogenesis had any influence on lymphatic function. Approach and Results- By optical imaging of macromolecular tracer washout in skin, we found that salt accumulation resulted in an increase in lymph flow of 26% that was noticeable only after including an overnight recording period. Surprisingly, lymph flow in skeletal muscle recorded with a new positron emission tomography/computed tomography method was also increased after salt exposure. The transcapillary filtration was unaffected by the high-salt diet and deoxycorticosterone-salt treatment, suggesting that the capillary barrier was not influenced by the salt accumulation. A significant reduction in lymph flow after depletion of macrophages/monocytes by clodronate suggests these cells are involved in the observed lymph flow response, together with collecting vessels shown here to enhance their contraction frequency as a response to extracellular Na+. Conclusions- The observed changes in lymph flow suggest that the lymphatics may influence long-term regulation of tissue fluid balance during salt accumulation by contributing to fluid homeostasis in skin and muscle. Our studies identify lymph clearance as a potential disease-modifying factor that might be targeted in conditions characterized by salt accumulation like chronic kidney disease and salt-sensitive hypertension.


Assuntos
Linfa/metabolismo , Linfangiogênese/efeitos dos fármacos , Músculo Esquelético/metabolismo , Pele/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Animais , Ácido Clodrônico/farmacologia , Linfa/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Sistema Fagocitário Mononuclear/efeitos dos fármacos , Sistema Fagocitário Mononuclear/metabolismo , Músculo Esquelético/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ratos Sprague-Dawley , Pele/diagnóstico por imagem , Fator C de Crescimento do Endotélio Vascular/metabolismo , Equilíbrio Hidroeletrolítico
3.
J Am Soc Nephrol ; 29(3): 857-868, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29237740

RESUMO

Collecting ducts make up the distal-most tubular segments of the kidney, extending from the cortex, where they connect to the nephron proper, into the medulla, where they release urine into the renal pelvis. During water deprivation, body water preservation is ensured by the selective transepithelial reabsorption of water into the hypertonic medullary interstitium mediated by collecting ducts. The collecting duct epithelium forms tight junctions composed of barrier-enforcing claudins and exhibits a higher transepithelial resistance than other segments of the renal tubule exhibit. However, the functional relevance of this strong collecting duct epithelial barrier is unresolved. Here, we report that collecting duct-specific deletion of an epithelial transcription factor, grainyhead-like 2 (GRHL2), in mice led to reduced expression of tight junction-associated barrier components, reduced collecting duct transepithelial resistance, and defective renal medullary accumulation of sodium and other osmolytes. In vitro, Grhl2-deficient collecting duct cells displayed increased paracellular flux of sodium, chloride, and urea. Consistent with these effects, Grhl2-deficient mice had diabetes insipidus, produced dilute urine, and failed to adequately concentrate their urine after water restriction, resulting in susceptibility to prerenal azotemia. These data indicate a direct functional link between collecting duct epithelial barrier characteristics, which appear to prevent leakage of interstitial osmolytes into urine, and body water homeostasis.


Assuntos
Epitélio/fisiologia , Túbulos Renais Coletores/fisiologia , Osmorregulação/genética , Junções Íntimas/genética , Junções Íntimas/fisiologia , Fatores de Transcrição/genética , Animais , Aquaporina 2/metabolismo , Aquaporina 4/metabolismo , Arginina Vasopressina/metabolismo , Azotemia/etiologia , Transporte Biológico/genética , Creatinina/urina , Perfilação da Expressão Gênica , Masculino , Camundongos , Concentração Osmolar , Transdução de Sinais , Ureia/metabolismo , Urina , Água/metabolismo , Privação de Água/fisiologia
4.
Arterioscler Thromb Vasc Biol ; 37(11): 2128-2135, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28935759

RESUMO

OBJECTIVE: Lymphatic vessels play an important role in body fluid, as well as immune system homeostasis. Although the role of malfunctioning or missing lymphatics has been studied extensively, less is known on the functional consequences of a chronically expanded lymphatic network or lymphangiogenesis. APPROACH AND RESULTS: To this end, we used K14-VEGF-C (keratin-14 vascular endothelial growth factor-C) transgenic mice overexpressing the vascular endothelial growth factor C in skin and investigated the responses to inflammatory and fluid volume challenges. We also recorded interstitial fluid pressure, a major determinant of lymph flow. Transgenic mice had a strongly enhanced lymph vessel area in skin. Acute inflammation induced by lipopolysaccharide and chronic inflammation by delayed-type hypersensitivity both resulted in increased interstitial fluid pressure and reduced lymph flow, both to the same extent in wild-type and transgenic mice. Hyperplastic lymphatic vessels, however, demonstrated enhanced transport capacity after local fluid overload not induced by inflammation. In this situation, interstitial fluid pressure was increased to a similar extent in the 2 strains, thus, suggesting that the enhanced lymph vessel area facilitated initial lymph formation. The increased lymph vessel area resulted in an enhanced production of the chemoattractant CCL21 that, however, did not result in augmented dendritic cell migration after induction of local skin inflammation by fluorescein isothiocyanate. CONCLUSIONS: An expanded lymphatic network is capable of enhanced chemoattractant production, and lymphangiogenesis will facilitate initial lymph formation favoring increased clearance of fluid in situations of augmented fluid filtration.


Assuntos
Quimiocina CCL21/metabolismo , Quimiotaxia , Células Dendríticas/metabolismo , Dermatite Alérgica de Contato/metabolismo , Linfa/metabolismo , Linfangiogênese , Vasos Linfáticos/metabolismo , Linfedema/metabolismo , Animais , Dermatite Alérgica de Contato/genética , Dermatite Alérgica de Contato/patologia , Dermatite Alérgica de Contato/fisiopatologia , Modelos Animais de Doenças , Líquido Extracelular/metabolismo , Feminino , Deslocamentos de Líquidos Corporais , Fluoresceína-5-Isotiocianato , Genótipo , Queratina-14/genética , Lipopolissacarídeos , Vasos Linfáticos/patologia , Vasos Linfáticos/fisiopatologia , Linfedema/genética , Linfedema/patologia , Linfedema/fisiopatologia , Masculino , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Oxazolona , Fenótipo , Pressão , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Tempo , Regulação para Cima , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo
5.
Cardiovasc Res ; 119(7): 1553-1567, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951047

RESUMO

AIMS: Cardiac energy metabolism is centrally involved in heart failure (HF), although the direction of the metabolic alterations is complex and likely dependent on the particular stage of HF progression. Vascular endothelial growth factor B (VEGF-B) has been shown to modulate metabolic processes and to induce physiological cardiac hypertrophy; thus, it could be cardioprotective in the failing myocardium. This study investigates the role of VEGF-B in cardiac proteomic and metabolic adaptation in HF during aldosterone and high-salt hypertensive challenges. METHODS AND RESULTS: Male rats overexpressing the cardiac-specific VEGF-B transgene (VEGF-B TG) were treated for 3 or 6 weeks with deoxycorticosterone-acetate combined with a high-salt (HS) diet (DOCA + HS) to induce hypertension and cardiac damage. Extensive longitudinal echocardiographic studies of HF progression were conducted, starting at baseline. Sham-treated rats served as controls. To evaluate the metabolic alterations associated with HF, cardiac proteomics by mass spectrometry was performed. Hypertrophic non-treated VEGF-B TG hearts demonstrated high oxygen and adenosine triphosphate (ATP) demand with early onset of diastolic dysfunction. Administration of DOCA + HS to VEGF-B TG rats for 6 weeks amplified the progression from cardiac hypertrophy to HF, with a drastic drop in heart ATP concentration. Dobutamine stress echocardiographic analyses uncovered a significantly impaired systolic reserve. Mechanistically, the hallmark of the failing TG heart was an abnormal energy metabolism with decreased mitochondrial ATP, preceding the attenuated cardiac performance and leading to systolic HF. CONCLUSIONS: This study shows that the VEGF-B TG accelerates metabolic maladaptation which precedes structural cardiomyopathy in experimental hypertension and ultimately leads to systolic HF.


Assuntos
Acetato de Desoxicorticosterona , Insuficiência Cardíaca Sistólica , Insuficiência Cardíaca , Hipertensão , Ratos , Masculino , Animais , Fator B de Crescimento do Endotélio Vascular/metabolismo , Insuficiência Cardíaca Sistólica/complicações , Proteômica , Hipertensão/metabolismo , Miocárdio/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/complicações , Cardiomegalia/genética , Cardiomegalia/metabolismo
6.
Hypertension ; 69(4): 660-668, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28167686

RESUMO

The common notion is that the body Na+ is maintained within narrow limits for fluid and blood pressure homeostasis. Several studies have, however, shown that considerable amounts of Na+ can be retained or removed from the body without commensurate water loss and that the skin can serve as a major salt reservoir. Our own data from rats have suggested that the skin is hypertonic compared with plasma on salt storage and that this also applies to skin interstitial fluid. Even small electrolyte gradients between plasma and interstitial fluid would represent strong edema-generating forces. Because the water accumulation has been shown to be modest, we decided to reexamine with alternative methods in rats whether interstitial fluid is hypertonic during salt accumulation induced by high-salt diet (8% NaCl and 1% saline to drink) or deoxycorticosterone pellet implantation. These treatments resulted both in increased systemic blood pressure, skin salt, and water accumulation and in skin hyperosmolality. Interstitial fluid isolated from implanted wicks and lymph draining the skin was, however, isosmotic, and Na+ concentration in fluid isolated by centrifugation and in lymph was not different from plasma. Interestingly, by eluting layers of the skin, we could show that there was an osmolality and urea gradient from epidermis to dermis. Collectively, our data suggest that fluid leaving the skin as lymph is isosmotic to plasma but also that the skin can differentially control its own electrolyte microenvironment by creating local gradients that may be functionally important.


Assuntos
Pressão Sanguínea/fisiologia , Líquido Extracelular/metabolismo , Hipertensão/metabolismo , Linfa/metabolismo , Pele/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Desequilíbrio Hidroeletrolítico/metabolismo , Animais , Modelos Animais de Doenças , Hipertensão/etiologia , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Equilíbrio Hidroeletrolítico , Desequilíbrio Hidroeletrolítico/complicações
7.
PLoS One ; 10(2): e0116947, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658606

RESUMO

OBJECTIVES: Postnatal gut maturation in neonatal mammals, either at natural weaning or after precocious inducement, is coinciding with enhanced enzymes production by exocrine pancreas. Since the involvement of enzymes in gut functional maturation was overlooked, the present study aimed to investigate the role of enzymes in gut functional maturation using neonatal rats. METHODS: Suckling rats (Rattus norvegicus) were instagastrically gavaged with porcine pancreatic enzymes (Creon), microbial-derived amylase, protease, lipase and mixture thereof, while controls received α-lactalbumin or water once per day during 14-16 d of age. At 17 d of age the animals were euthanized and visceral organs were dissected, weighed and analyzed for structural and functional properties. For some of the rats, gavage with the macromolecular markers such as bovine serum albumin and bovine IgG was performed 3 hours prior to blood collection to assess the intestinal permeability. RESULTS: Gavage with the pancreatic or pancreatic-like enzymes resulted in stimulated gut growth, increased gastric acid secretion and switched intestinal disaccharidases, with decreased lactase and increased maltase and sucrase activities. The fetal-type vacuolated enterocytes were replaced by the adult-type in the distal intestine, and macromolecular transfer to the blood was declined. Enzyme exposure also promoted pancreas growth with increased amylase and trypsin production. These effects were confined to the proteases in a dose-dependent manner. CONCLUSION: Feeding exogenous enzymes, containing proteases, induced precocious gut maturation in suckling rats. This suggests that luminal exposure to proteases by oral loading or, possibly, via enhanced pancreatic secretion involves in the gut maturation of young mammals.


Assuntos
Intestinos/crescimento & desenvolvimento , Pâncreas/enzimologia , Peptídeo Hidrolases/farmacologia , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Bovinos , Relação Dose-Resposta a Droga , Feminino , Ácido Gástrico/metabolismo , Imunoglobulina G/sangue , Intestinos/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Ratos Sprague-Dawley , Soroalbumina Bovina/análise , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA