Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Theor Appl Genet ; 137(6): 130, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744692

RESUMO

KEY MESSAGE: Genome-wide association study of color spaces across the four cultivated Capsicum spp. revealed a shared set of genes influencing fruit color, suggesting mechanisms and pathways across Capsicum species are conserved during the speciation. Notably, Cytochrome P450 of the carotenoid pathway, MYB transcription factor, and pentatricopeptide repeat-containing protein are the major genes responsible for fruit color variation across the Capsicum species. Peppers (Capsicum spp.) rank among the most widely consumed spices globally. Fruit color, serving as a determinant for use in food colorants and cosmeceuticals and an indicator of nutritional contents, significantly influences market quality and price. Cultivated Capsicum species display extensive phenotypic diversity, especially in fruit coloration. Our study leveraged the genetic variance within four Capsicum species (Capsicum baccatum, Capsicum chinense, Capsicum frutescens, and Capsicum annuum) to elucidate the genetic mechanisms driving color variation in peppers and related Solanaceae species. We analyzed color metrics and chromatic attributes (Red, Green, Blue, L*, a*, b*, Luminosity, Hue, and Chroma) on samples cultivated over six years (2015-2021). We resolved genomic regions associated with fruit color diversity through the sets of SNPs obtained from Genotyping by Sequencing (GBS) and genome-wide association study (GWAS) with a Multi-Locus Mixed Linear Model (MLMM). Significant SNPs with FDR correction were identified, within the Cytochrome P450, MYB-related genes, Pentatricopeptide repeat proteins, and ABC transporter family were the most common among the four species, indicating comparative evolution of fruit colors. We further validated the role of a pentatricopeptide repeat-containing protein (Chr01:31,205,460) and a cytochrome P450 enzyme (Chr08:45,351,919) via competitive allele-specific PCR (KASP) genotyping. Our findings advance the understanding of the genetic underpinnings of Capsicum fruit coloration, with developed KASP assays holding potential for applications in crop breeding and aligning with consumer preferences. This study provides a cornerstone for future research into exploiting Capsicum's diverse fruit color variation.


Assuntos
Capsicum , Frutas , Fenótipo , Pigmentação , Polimorfismo de Nucleotídeo Único , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Pigmentação/genética , Cor , Genótipo , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Variação Genética
2.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928266

RESUMO

Curcumin, a polyphenol derived from Curcuma longa, used as a dietary spice, has garnered attention for its therapeutic potential, including antioxidant, anti-inflammatory, and antimicrobial properties. Despite its known benefits, the precise mechanisms underlying curcumin's effects on consumers remain unclear. To address this gap, we employed the genetic model Drosophila melanogaster and leveraged two omics tools-transcriptomics and metabolomics. Our investigation revealed alterations in 1043 genes and 73 metabolites upon supplementing curcumin into the diet. Notably, we observed genetic modulation in pathways related to antioxidants, carbohydrates, and lipids, as well as genes associated with gustatory perception and reproductive processes. Metabolites implicated in carbohydrate metabolism, amino acid biosynthesis, and biomarkers linked to the prevention of neurodegenerative diseases such as schizophrenia, Alzheimer's, and aging were also identified. The study highlighted a strong correlation between the curcumin diet, antioxidant mechanisms, and amino acid metabolism. Conversely, a lower correlation was observed between carbohydrate metabolism and cholesterol biosynthesis. This research highlights the impact of curcumin on the diet, influencing perception, fertility, and molecular wellness. Furthermore, it directs future studies toward a more focused exploration of the specific effects of curcumin consumption.


Assuntos
Curcumina , Drosophila melanogaster , Metaboloma , Transcriptoma , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Curcumina/farmacologia , Curcumina/administração & dosagem , Metaboloma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Dieta , Metabolômica/métodos
3.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958599

RESUMO

Cancer researchers are fascinated by the chemistry of diverse natural products that show exciting potential as anticancer agents. In this study, we aimed to investigate the anticancer properties of watermelon rind extract (WRE) by examining its effects on cell proliferation, apoptosis, senescence, and global gene expression in human renal cell adenocarcinoma cells (HRAC-769-P) in vitro. Our metabolome data analysis of WRE exhibited untargeted phyto-constituents and targeted citrulline (22.29 µg/mg). HRAC-769-P cells were cultured in RPMI-1640 media and treated with 22.4, 44.8, 67.2, 88.6, 112, 134.4, and 156.8 mg·mL-1 for 24, 48, and 72 h. At 24 h after treatment, (88.6 mg·mL-1 of WRE) cell proliferation significantly reduced, more than 34% compared with the control. Cell viability decreased 48 and 72 h after treatment to 45% and 37%, respectively. We also examined poly caspase, SA-beta-galactosidase (SA-beta-gal), and wound healing activities using WRE. All treatments induced an early poly caspase response and a significant reduction in cell migration. Further, we analyzed the transcript profile of the cells grown at 44.8 mg·mL-1 of WRE after 6 h using RNA sequencing (RNAseq) analysis. We identified 186 differentially expressed genes (DEGs), including 149 upregulated genes and 37 downregulated genes, in cells treated with WRE compared with the control. The differentially expressed genes were associated with NF-Kappa B signaling and TNF pathways. Crucial apoptosis-related genes such as BMF, NPTX1, NFKBIA, NFKBIE, and NFKBID might induce intrinsic and extrinsic apoptosis. Another possible mechanism is a high quantity of citrulline may lead to induction of apoptosis by the production of increased nitric oxide. Hence, our study suggests the potential anticancer properties of WRE and provides insights into its effects on cellular processes and gene expression in HRAC-769-P cells.


Assuntos
Carcinoma de Células Renais , Citrullus , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Transcriptoma , Citrullus/genética , Frutas/metabolismo , Citrulina/metabolismo , Caspases/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo
4.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686177

RESUMO

Fruits, vegetables, and spices are natural sources of bioactive phytochemicals, such as polyphenols, carotenoids, flavonoids, curcuminoids, terpenoids, and capsaicinoids, possessing multiple health benefits and relatively low toxicity. These compounds found in the diet play a central role in organism development and fitness. Given the complexity of the whole-body response to dietary changes, invertebrate model organisms can be valuable tools to examine the interplay between genes, signaling pathways, and metabolism. Drosophila melanogaster, an invertebrate model with its extensively studied genome, has more than 70% gene homology to humans and has been used as a model system in biological studies for a long time. The notable advantages of Drosophila as a model system, such as their low maintenance cost, high reproductive rate, short generation time and lifespan, and the high similarity of metabolic pathways between Drosophila and mammals, have encouraged the use of Drosophila in the context of screening and evaluating the impact of phytochemicals present in the diet. Here, we review the benefits of Drosophila as a model system for use in the study of phytochemical ingestion and describe the previously reported effects of phytochemical consumption in Drosophila.


Assuntos
Drosophila melanogaster , Drosophila , Humanos , Animais , Carotenoides , Diarileptanoides , Compostos Fitoquímicos/farmacologia , Mamíferos
5.
Plant J ; 106(3): 588-600, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33788333

RESUMO

Polyploidy has played a crucial role in plant evolution, development and function. Synthetic autopolyploid represents an ideal system to investigate the effects of polyploidization on transcriptional regulation. In this study, we deciphered the impact of genome duplication at phenotypic and molecular levels in watermelon. Overall, 88% of the genes in tetraploid watermelon followed a >1:1 dosage effect, and accordingly, differentially expressed genes were largely upregulated. In addition, a great number of hypomethylated regions (1688) were identified in an isogenic tetraploid watermelon. These differentially methylated regions were localized in promoters and intergenic regions and near transcriptional start sites of the identified upregulated genes, which enhances the importance of methylation in gene regulation. These changes were reflected in sophisticated higher-order chromatin structures. The genome doubling caused switching of 108 A and 626 B compartments that harbored genes associated with growth, development and stress responses.


Assuntos
Cromatina/ultraestrutura , Citrullus/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Cromatina/genética , Cromatina/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Cromossomos de Plantas/ultraestrutura , Citrullus/metabolismo , Epigenoma/genética , Estudos de Associação Genética , Genoma de Planta/genética , Poliploidia , Tetraploidia
6.
Genomics ; 113(5): 3002-3014, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34229041

RESUMO

Phenotype diversity within cultivated Capsicum chinense is particularly evident for fruit shape and size. We used this diversity in C. chinense to further unravel the genetic mechanisms underlying fruit shape variation in pepper and related Solanaceous species. We identified candidate genes for C. chinense fruit shape, explored their contribution to population structure, and characterized their potential function in pepper fruit shape. Using genotyping by sequencing, we identified 43,081 single nucleotide polymorphisms (SNPs) from diverse collections of C. chinense. Principal component, neighbor-joining tree, and population structure analyses resolved 3 phylogenetically robust clusters associated with fruit shapes. Genome-wide association study (GWAS) was used to identify associated genomic regions with various fruit shape traits obtained from image analysis with Tomato Analyzer software. In our GWAS, we selected 12 SNPs associated with locule number trait and 8 SNP markers associated with other fruit shape traits such as perimeter, area, obovoid, ellipsoid and morphometrics (5y, 6y and 7y). The SNPs in CLAVATA1, WD-40, Auxin receptor, AAA type ATPase family protein, and RNA polymerase III genes were the major markers identified for fruit locule number from our GWAS results. Furthermore, we found SNPs in tetratricopeptide-repeat thioredoxin-like 3, enhancer of ABA co-receptor 1, subunit of exocyst complex 8 and pleiotropic drug resistance proteins associated with various fruit shape traits. CLAVATA1, WD-40 and Auxin receptor genes are known genes that affect tomato fruit shape. In this study, we used Arabidopsis thaliana T-DNA insertion knockout mutants and expression profiles for functional characterization of newly identified genes and to understand their role in fruit shape.


Assuntos
Capsicum , Solanum lycopersicum , Capsicum/genética , Capsicum/metabolismo , Frutas/genética , Frutas/metabolismo , Estudo de Associação Genômica Ampla , Solanum lycopersicum/genética , Fenótipo
7.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233154

RESUMO

Many plants naturally synthesize and secrete secondary metabolites that exert an allelopathic effect, offering compelling alternatives to chemical herbicides. These natural herbicides are highly important for sustainable agricultural practices. Ailanthone is the chemical responsible for the herbicidal effect of Ailanthus altissima, or "tree of heaven". The molecular studies involving ailanthone's effect on plant growth are limited. In the current study, we combined whole-transcriptome and physiology analysis of three Arabidopsis thaliana ecotypes treated with ailanthone to identify the effect of this allelopathic chemical on genes and plant growth. Our physiology results showed 50% reduced root growth, high proline accumulation, and high reactive-oxygen-species accumulation in response to ailanthone stress. Deep transcriptome analysis revealed 528, 473, and 482 statistically significant differentially expressed genes for Col-0, Cvi-0, and U112-3 under ailanthone stress, including 131 genes shared among the three accessions. The common genes included 82 upregulated and 42 downregulated genes and varied in expression at least twofold. The study also revealed that 34 of the 131 genes had a similar expression pattern when Arabidopsis seedlings were subjected to other herbicides. Differentially expressed genes significantly induced in response to ailanthone included DTXL1, DTX1, ABCC3, NDB4, UGT74E2, and AZI1. Pathways of stress, development and hormone metabolism were significantly altered under ailanthone stress. These results suggest that ailanthone triggers a significant stress response in multiple pathways similar to other herbicides.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Herbicidas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Herbicidas/metabolismo , Herbicidas/farmacologia , Hormônios/metabolismo , Oxigênio/metabolismo , Prolina/metabolismo , Quassinas , Estresse Fisiológico/genética , Transcriptoma
8.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077322

RESUMO

The habanero pepper (Capsicum chinense) is an increasingly important spice and vegetable crop worldwide because of its high capsaicin content and pungent flavor. Diets supplemented with the phytochemicals found in habanero peppers might cause shifts in an organism's metabolism and gene expression. Thus, understanding how these interactions occur can reveal the potential health effects associated with such changes. We performed transcriptomic and metabolomic analyses of Drosophila melanogaster adult flies reared on a habanero pepper diet. We found 539 genes/59 metabolites that were differentially expressed/accumulated in flies fed a pepper versus control diet. Transcriptome results indicated that olfactory sensitivity and behavioral responses to the pepper diet were mediated by olfactory and nutrient-related genes including gustatory receptors (Gr63a, Gr66a, and Gr89a), odorant receptors (Or23a, Or59a, Or82a, and Orco), and odorant-binding proteins (Obp28a, Obp83a, Obp83b, Obp93a, and Obp99a). Metabolome analysis revealed that campesterol, sitosterol, and sucrose were highly upregulated and azelaic acid, ethyl phosphoric acid, and citric acid were the major metabolites downregulated in response to the habanero pepper diet. Further investigation by integration analysis between transcriptome and metabolome data at gene pathway levels revealed six unique enriched pathways, including phenylalanine metabolism; insect hormone biosynthesis; pyrimidine metabolism; glyoxylate, and dicarboxylate metabolism; glycine, serine, threonine metabolism; and glycerolipid metabolism. In view of the transcriptome and metabolome findings, our comprehensive analysis of the response to a pepper diet in Drosophila have implications for exploring the molecular mechanism of pepper consumption.


Assuntos
Capsicum , Piper nigrum , Animais , Capsicum/química , Capsicum/genética , Dieta , Drosophila melanogaster/genética , Metaboloma , Piper nigrum/genética , Transcriptoma
9.
Int J Mol Sci ; 22(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064462

RESUMO

MicroRNAs (miRNAs) are regulators of the post-transcription stage of gene activity documented to play central roles in flower and fruit development in model plant species. However, little is known about their roles and differences in domesticated and wild Capsicum species. In this study, we used high-throughput sequencing to analyze the miRNA content at three developmental stages (flower, small fruit, and middle fruit) from two cultivated (C. baccatum and C. annuum) and two wild (C. chacoense and C. eximium) pepper species. This analysis revealed 22 known and 27 novel miRNAs differentially expressed across species and tissues. A number of stage- and species-specific miRNAs were identified, and Gene Ontology terms were assigned to 138 genes targeted by the miRNAs. Most Gene Ontology terms were for the categories "genetic information processing", "signaling and cellular processes", "amino acid metabolism", and "carbohydrate metabolism". Enriched KEGG analysis revealed the pathways amino acids, sugar and nucleotide metabolism, starch and sucrose metabolism, and fructose-mannose metabolism among the principal ones regulated by miRNAs during pepper fruit ripening. We predicted miRNA-target gene interactions regulating flowering time and fruit development, including miR156/157 with SPL genes, miR159 with GaMYB proteins, miR160 with ARF genes, miR172 with AP2-like transcription factors, and miR408 with CLAVATA1 gene across the different Capsicum species. In addition, novel miRNAs play an important role in regulating interactions potentially controlling plant pathogen defense and fruit quality via fructokinase, alpha-L-arabinofuranosidase, and aromatic and neutral amino acid transporter. Overall, the small RNA-sequencing results from this study represent valuable information that provides a solid foundation for uncovering the miRNA-mediated mechanisms of flower and fruit development between domesticated and wild Capsicum species.


Assuntos
Capsicum/genética , Flores/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Proteínas de Plantas/genética , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Capsicum/classificação , Capsicum/crescimento & desenvolvimento , Capsicum/metabolismo , Domesticação , Flores/crescimento & desenvolvimento , Flores/metabolismo , Frutoquinases/genética , Frutoquinases/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Redes e Vias Metabólicas/genética , MicroRNAs/classificação , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Plant Mol Biol ; 102(1-2): 213-223, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31845303

RESUMO

KEY MESSAGE: Transcriptome landscape reveals the molecular mechanisms involved in the improvement of fruit traits by the grafting of watermelon and bottle gourd. Grafting has been used as a sustainable alternative for watermelon breeding to control soil-borne pathogens and to increase tolerance to various abiotic stresses. However, some reports have shown that grafting can negatively affect the quality of fruits. Despite several field studies on the effects of grafting on fruit quality, the regulation of this process at the molecular level has not been revealed. The aim of this study was to elucidate various molecular mechanisms involved in different tissues of heterografted watermelon and bottle gourd plants. Grafting with bottle gourd rootstock increased the size and rind thickness of watermelon fruits, whereas that with watermelon rootstock produced bottle gourd fruits with higher total soluble solid content and thinner rinds. Correspondingly, genes related to ripening, softening, cell wall strengthening, stress response and disease resistance were differentially expressed in watermelon fruits. Moreover, genes associated mainly with sugar metabolism were differentially expressed in bottle gourd fruits. RNA-seq revealed more than 400 mobile transcripts across the heterografted sets. More than half of these were validated from PlaMoM, a database for plant mobile macromolecules. In addition, some of these mobile transcripts contained a transfer RNA-like structure. Other RNA motifs were also enriched in these transcripts, most with a biological role based on GO analysis. This transcriptome study provided a comprehensive understanding of various molecular mechanisms underlying grafted tissues in watermelon.


Assuntos
Citrullus/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Transcriptoma , Transplante Heterólogo , Metabolismo dos Carboidratos , Citrullus/genética , Resistência à Doença/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Melhoramento Vegetal , Raízes de Plantas/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas , Análise de Sequência , Estresse Fisiológico
11.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092953

RESUMO

Habanero peppers constantly face biotic and abiotic stresses such as pathogen/pest infections, extreme temperature, drought and UV radiation. In addition, the fruit cutin lipid composition plays an important role in post-harvest water loss rates, which in turn causes shriveling and reduced fruit quality and storage. In this study, we integrated metabolome and transcriptome profiling pertaining to cutin in two habanero genotypes: PI 224448 and PI 257145. The fruits were selected by the waxy or glossy phenotype on their surfaces. Metabolomics analysis showed a significant variation in cutin composition, with about 6-fold higher cutin in PI 257145 than PI 224448. It also revealed that 10,16-dihydroxy hexadecanoic acid is the most abundant monomer in PI 257145. Transcriptomic analysis of high-cutin PI 257145 and low-cutin PI 224448 resulted in the identification of 2703 statistically significant differentially expressed genes, including 1693 genes upregulated and 1010 downregulated in high-cutin PI 257145. Genes and transcription factors such as GDSL lipase, glycerol-3 phosphate acyltransferase 6, long-chain acyltransferase 2, cytochrome P450 86A/77A, SHN1, ANL2 and HDG1 highly contributed to the high cutin content in PI 257145. We predicted a putative cutin biosynthetic pathway for habanero peppers based on deep transcriptome analysis. This is the first study of the transcriptome and metabolome pertaining to cutin in habanero peppers. These analyses improve our knowledge of the molecular mechanisms regulating the accumulation of cutin in habanero pepper fruits. These resources can be built on for developing cultivars with high cutin content that show resistance to biotic and abiotic stresses with superior postharvest appearance.


Assuntos
Capsicum/genética , Frutas/metabolismo , Lipídeos de Membrana/biossíntese , Metabolômica/métodos , Transcriptoma/genética , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Capsicum/química , Capsicum/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação para Baixo , Frutas/genética , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ontologia Genética , Genótipo , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Proteínas de Homeodomínio/metabolismo , Lipídeos de Membrana/análise , Lipídeos de Membrana/química , Ácidos Palmíticos/metabolismo , Fenótipo , RNA-Seq , Fatores de Transcrição/metabolismo , Transcriptoma/fisiologia , Regulação para Cima
12.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023882

RESUMO

One of the greatest impacts on the gastrointestinal microbiome is diet because the host and microbiome share the same food source. In addition, the effect of diet can diverge depending on the host genotype. Diets supplemented with phytochemicals found in peppers might cause shifts in the microbiome. Thus, understanding how these interactions occur can reveal potential health implications associated with such changes. This study aims to explore the gut microbiome of different Drosophila genetic backgrounds and the effects of dietary pepper treatments on its composition and structure. We analyzed the gut microbiomes of three Drosophila melanogaster genetic backgrounds (Canton-S, Oregon-RC, and Berlin-K) reared on control and pepper-containing diets (bell, serrano, and habanero peppers). Results of 16S rRNA gene sequencing revealed that the variability of Drosophila gut microbiome can be driven mainly by genetic factors. When the abundance of these communities is considered, pepper-containing diets also appear to have an effect. The most relevant change in microbial composition was the increment of Lactobacillaceae and Acetobacteraceae abundance in the pepper-containing diets in comparison with the controls in Oregon-RC and Berlin-K. Regression analysis demonstrated that this enhancement was associated with the content of phenolic compounds and carotenoids of the peppers utilized in this study; specifically, to the concentration of ß-carotene, ß-cryptoxanthin, myricetin, quercetin, and apigenin.


Assuntos
Bactérias/classificação , Bactérias/genética , Dieta/métodos , Drosophila melanogaster/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Piper nigrum/química , Animais , Bactérias/isolamento & purificação , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino
13.
Funct Integr Genomics ; 19(1): 171-190, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30244303

RESUMO

Elevated CO2 along with drought is a serious global threat to crop productivity. Therefore, understanding the molecular mechanisms plants use to protect these stresses is the key for plant growth and development. In this study, we mimicked natural stress conditions under a controlled Soil-Plant-Atmosphere-Research (SPAR) system and provided the evidence for how miRNAs regulate target genes under elevated CO2 and drought conditions. Significant physiological and biomass data supported the effective utilization of source-sink (leaf to root) under elevated CO2. Additionally, elevated CO2 partially rescued the effect of drought on total biomass. We identified both known and novel miRNAs differentially expressed during drought, CO2, and combined stress, along with putative targets. A total of 32 conserved miRNAs belonged to 23 miRNA families, and 25 novel miRNAs were identified by deep sequencing. Using the existing sweet potato genome database and stringent analyses, a total of 42 and 22 potential target genes were predicted for the conserved and novel miRNAs, respectively. These target genes are involved in drought response, hormone signaling, photosynthesis, carbon fixation, sucrose and starch metabolism, etc. Gene ontology and KEGG ontology functional enrichment revealed that these miRNAs might target transcription factors (MYB, TCP, NAC), hormone signaling regulators (ARF, AP2/ERF), cold and drought factors (corA), carbon metabolism (ATP synthase, fructose-1,6-bisphosphate), and photosynthesis (photosystem I and II complex units). Our study is the first report identifying targets of miRNAs under elevated CO2 levels and could support the molecular mechanisms under elevated CO2 in sweet potato and other crops in the future.


Assuntos
Dióxido de Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Ipomoea batatas/genética , MicroRNAs/genética , Folhas de Planta/genética , Raízes de Plantas/genética , Biomassa , Ciclo do Carbono/genética , Secas , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Fotossíntese/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico/genética
14.
Plant Biotechnol J ; 17(12): 2246-2258, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31022325

RESUMO

Years of selection for desirable fruit quality traits in dessert watermelon (Citrullus lanatus) has resulted in a narrow genetic base in modern cultivars. Development of novel genomic and genetic resources offers great potential to expand genetic diversity and improve important traits in watermelon. Here, we report a high-quality genome sequence of watermelon cultivar 'Charleston Gray', a principal American dessert watermelon, to complement the existing reference genome from '97103', an East Asian cultivar. Comparative analyses between genomes of 'Charleston Gray' and '97103' revealed genomic variants that may underlie phenotypic differences between the two cultivars. We then genotyped 1365 watermelon plant introduction (PI) lines maintained at the U.S. National Plant Germplasm System using genotyping-by-sequencing (GBS). These PI lines were collected throughout the world and belong to three Citrullus species, C. lanatus, C. mucosospermus and C. amarus. Approximately 25 000 high-quality single nucleotide polymorphisms (SNPs) were derived from the GBS data using the 'Charleston Gray' genome as the reference. Population genomic analyses using these SNPs discovered a close relationship between C. lanatus and C. mucosospermus and identified four major groups in these two species correlated to their geographic locations. Citrullus amarus was found to have a distinct genetic makeup compared to C. lanatus and C. mucosospermus. The SNPs also enabled identification of genomic regions associated with important fruit quality and disease resistance traits through genome-wide association studies. The high-quality 'Charleston Gray' genome and the genotyping data of this large collection of watermelon accessions provide valuable resources for facilitating watermelon research, breeding and improvement.


Assuntos
Citrullus/genética , Genoma de Planta , Mapeamento Cromossômico , Resistência à Doença , Frutas , Estudos de Associação Genética , Genômica , Polimorfismo de Nucleotídeo Único
15.
Int J Mol Sci ; 20(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671884

RESUMO

Watermelon is a good source of citrulline, a non-protein amino acid. Citrulline has several therapeutic and clinical implications as it produces nitric oxide via arginine. In plants, citrulline plays a pivotal role in nitrogen transport and osmoprotection. The purpose of this study was to identify single nucleotide polymorphism (SNP) markers associated with citrulline metabolism using a genome-wide association study (GWAS) and understand the role of citrulline in watermelon domestication. A watermelon collection consisting of 187 wild, landraces, and cultivated accessions was used to estimate citrulline content. An association analysis involved a total of 12,125 SNPs with a minor allele frequency (MAF) >0.05 in understanding the population structure and phylogeny in light of citrulline accumulation. Wild egusi types and landraces contained low to medium citrulline content, whereas cultivars had higher content, which suggests that obtaining higher content of citrulline is a domesticated trait. GWAS analysis identified candidate genes (ferrochelatase and acetolactate synthase) showing a significant association of SNPs with citrulline content. Haplotype networking indicated positive selection from wild to domesticated watermelon. To our knowledge, this is the first study showing genetic regulation of citrulline variation in plants by using a GWAS strategy. These results provide new insights into the citrulline metabolism in plants and the possibility of incorporating high citrulline as a trait in watermelon breeding programs.


Assuntos
Citrulina/genética , Citrulina/metabolismo , Citrullus/genética , Citrullus/metabolismo , Domesticação , Estudo de Associação Genômica Ampla/métodos , Haplótipos/genética , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Arginina , Ferroquelatase/genética , Ferroquelatase/metabolismo , Frequência do Gene , Ontologia Genética , Genes de Plantas/genética , Genoma de Planta , Óxido Nítrico , Osmorregulação , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único
16.
BMC Plant Biol ; 16(1): 122, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27230657

RESUMO

BACKGROUND: MicroRNAs (miRNAs), a class of small non-coding endogenous RNAs that regulate gene expression post-transcriptionally, play multiple key roles in plant growth and development and in biotic and abiotic stress response. Knowledge and roles of miRNAs in pomegranate fruit development have not been explored. RESULTS: Pomegranate, which accumulates a large amount of anthocyanins in skin and arils, is valuable to human health, mainly because of its antioxidant properties. In this study, we developed a small RNA library from pooled RNA samples from young seedlings to mature fruits and identified both conserved and pomegranate-specific miRNA from 29,948,480 high-quality reads. For the pool of 15- to 30-nt small RNAs, ~50 % were 24 nt. The miR157 family was the most abundant, followed by miR156, miR166, and miR168, with variants within each family. The base bias at the first position from the 5' end had a strong preference for U for most 18- to 26-nt sRNAs but a preference for A for 18-nt sRNAs. In addition, for all 24-nt sRNAs, the nucleotide U was preferred (97 %) in the first position. Stem-loop RT-qPCR was used to validate the expression of the predominant miRNAs and novel miRNAs in leaves, male and female flowers, and multiple fruit developmental stages; miR156, miR156a, miR159a, miR159b, and miR319b were upregulated during the later stages of fruit development. Higher expression of miR156 in later fruit developmental may positively regulate anthocyanin biosynthesis by reducing SPL transcription factor. Novel miRNAs showed variation in expression among different tissues. These novel miRNAs targeted different transcription factors and hormone related regulators. Gene ontology and KEGG pathway analyses revealed predominant metabolic processes and catalytic activities, important for fruit development. In addition, KEGG pathway analyses revealed the involvement of miRNAs in ascorbate and linolenic acid, starch and sucrose metabolism; RNA transport; plant hormone signaling pathways; and circadian clock. CONCLUSION: Our first and preliminary report of miRNAs will provide information on the synthesis of biochemical compounds of pomegranate for future research. The functions of the targets of the novel miRNAs need further investigation.


Assuntos
Regulação da Expressão Gênica de Plantas , Lythraceae/genética , MicroRNAs/genética , RNA de Plantas/genética , Flores/genética , Flores/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Lythraceae/crescimento & desenvolvimento , Lythraceae/metabolismo , MicroRNAs/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
17.
Mol Genet Genomics ; 290(4): 1393-402, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25675870

RESUMO

This genetic diversity study aimed to estimate the population structure and explore the use of association mapping strategies to identify linked markers for bacterial resistance, growth and fruit quality in pomegranate collections from India. In total, 88 accessions including 37 cultivated types were investigated. A total of 112 alleles were amplified by use of 44 publicly available microsatellites for estimating molecular genetic diversity and population structure. Neighbor-joining analysis, model-based population structure and principal component analysis corroborated the genetic relationships among wild-type and cultivated pomegranate collections from India. Our study placed all 88 germplasm into four clusters. We identified a cultivated clade of pomegranates in close proximity to Daru types of wild-type pomegranates that grow naturally near the foothills of the Himalayas. Admixture analysis sorted various lineages of cultivated pomegranates to their respective ancestral forms. We identified four linked markers for fruit weight, titratable acidity and bacterial blight severity. PGCT001 was found associated with both fruit weight and bacterial blight, and the association with fruit weight during both seasons analyzed was significant after Bonferroni correction. This research demonstrates effectiveness of microsatellites to resolve population structure among the wild and cultivar collection of pomegranates and future use for association mapping studies.


Assuntos
Variação Genética , Lythraceae/genética , Repetições de Microssatélites/genética , Doenças das Plantas/genética , Análise de Variância , Mapeamento Cromossômico , Análise por Conglomerados , Resistência à Doença/genética , Fluxo Gênico , Genética Populacional , Interações Hospedeiro-Patógeno , Índia , Lythraceae/classificação , Lythraceae/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Análise de Componente Principal , Estações do Ano , Especificidade da Espécie , Xanthomonas axonopodis/fisiologia
18.
J Exp Bot ; 66(5): 1369-85, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25520388

RESUMO

The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits.


Assuntos
Processamento Alternativo , Citrullus/genética , Diploide , Proteínas de Plantas/genética , Tetraploidia , Citrullus/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
19.
Environ Sci Technol ; 49(17): 10320-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26269111

RESUMO

Efficient postmining reclamation requires successful revegetation. By using RNA sequencing, we evaluated the growth response of two invasive plants, goutweed (Aegopodium podagraria L.) and mugwort (Artemisia vulgaris), grown in two Appalachian acid-mine soils (MS-I and -II, pH ∼ 4.6). Although deficient in macronutrients, both soils contained high levels of plant-available Al, Fe and Mn. Both plant types showed toxicity tolerance, but metal accumulation differed by plant and site. With MS-I, Al accumulation was greater for mugwort than goutweed (385 ± 47 vs 2151 ± 251 µg g-1). Al concentration was similar between mine sites, but its accumulation in mugwort was greater with MS-I than MS-II, with no difference in accumulation by site for goutweed. An in situ approach revealed deregulation of multiple factors such as transporters, transcription factors, and metal chelators for metal uptake or exclusion. The two plant systems showed common gene expression patterns for different pathways. Both plant systems appeared to have few common heavy-metal pathway regulators addressing mineral toxicity/deficiency in both mine sites, which implies adaptability of invasive plants for efficient growth at mine sites with toxic waste. Functional genomics can be used to screen for plant adaptability, especially for reclamation and phytoremediation of contaminated soils and waters.


Assuntos
Carvão Mineral , Perfilação da Expressão Gênica , Espécies Introduzidas , Minerais/toxicidade , Mineração , Plantas/genética , Solo/química , Região dos Apalaches , Biodegradação Ambiental/efeitos dos fármacos , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Família Multigênica , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Poluentes do Solo/toxicidade , Testes de Toxicidade , Regulação para Cima/genética
20.
J Hered ; 106(2): 166-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25425675

RESUMO

Our genetic diversity study uses microsatellites of known map position to estimate genome level population structure and linkage disequilibrium, and to identify genomic regions that have undergone selection during watermelon domestication and improvement. Thirty regions that showed evidence of selective sweep were scanned for the presence of candidate genes using the watermelon genome browser (www.icugi.org). We localized selective sweeps in intergenic regions, close to the promoters, and within the exons and introns of various genes. This study provided an evidence of convergent evolution for the presence of diverse ecotypes with special reference to American and European ecotypes. Our search for location of linked markers in the whole-genome draft sequence revealed that BVWS00358, a GA repeat microsatellite, is the GAGA type transcription factor located in the 5' untranslated regions of a structure and insertion element that expresses a Cys2His2 Zinc finger motif, with presumed biological processes related to chitin response and transcriptional regulation. In addition, BVWS01708, an ATT repeat microsatellite, located in the promoter of a DTW domain-containing protein (Cla002761); and 2 other simple sequence repeats that association mapping link to fruit length and rind thickness.


Assuntos
Mapeamento Cromossômico , Citrullus/genética , Frutas/genética , Repetições de Microssatélites , Evolução Biológica , DNA de Plantas/genética , Ecótipo , Variação Genética , Genoma de Planta , Desequilíbrio de Ligação , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA