Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Inorg Chem ; 63(8): 3835-3842, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38349821

RESUMO

Optical thermometry has gained significant attention due to its remarkable sensitivity and noninvasive, rapid response to temperature changes. However, achieving both high absolute and relative temperature sensitivity in two-dimensional perovskites presents a substantial challenge. Here, we propose a novel approach to address this issue by designing and synthesizing a new narrow-band blue light-emitting two-dimensional perovskite named (C8H12NO2)2PbBr4 using a straightforward solution-based method. Under excitation of near-ultraviolet light, (C8H12NO2)2PbBr4 shows an ultranarrow emission band with the full width at half-maximum (FWHM) of only 19 nm. Furthermore, its luminescence property can be efficiently tuned by incorporating energy transfer from host excitons to Mn2+. This energy transfer leads to dual emission, encompassing both blue and orange emissions, with an impressive energy transfer efficiency of 38.3%. Additionally, we investigated the temperature-dependent fluorescence intensity ratio between blue emission of (C8H12NO2)2PbBr4 and orange emission of Mn2+. Remarkably, (C8H12NO2)2PbBr4:Mn2+ exhibited maximum absolute sensitivity and relative sensitivity values of 0.055 K-1 and 3.207% K-1, respectively, within the temperature range of 80-360 K. This work highlights the potential of (C8H12NO2)2PbBr4:Mn2+ as a promising candidate for optical thermometry sensor application. Moreover, our findings provide valuable insights into the design of narrow-band blue light-emitting perovskites, enabling the achievement of single-component dual emission in optical thermometry sensors.

2.
Inorg Chem ; 62(30): 12050-12057, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37463109

RESUMO

Narrowband ultraviolet-B (NB-UVB) luminescent materials are characterized by high photon energy, narrow spectral width, and visible-blind emission, thus holding great promise for photochemistry and photomedicine. However, most NB-UVB phosphors developed so far are photoluminescent, where continuous external excitation is needed. Herein, we realize NB-UVB persistent luminescence (PersL) in an indoor-lighting environment by exploiting the interaction between self-trapped/defect-trapped excitons and Gd3+ emitters in ScPO4. The phosphor shows a self-luminescing feature with a peak maximum at 313 nm with a time duration of >24 h after ceasing X-ray irradiation, which can be clearly imaged by an UVB camera in a bright environment. Spectroscopic and theoretical approaches reveal that thermo- and photo-stimulations of energies trapped at intrinsic lattice defects followed by energy transfer to Gd3+ emitters account for the emergence of the afterglow. The present results can initiate more exploration of NB-UVB PersL phosphors for emerging applications in secret optical tagging and phototherapy.

3.
Angew Chem Int Ed Engl ; 62(27): e202303482, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37129053

RESUMO

Although large amount of effort has been invested in combating thermal quenching that severely degrades the performance of luminescent materials particularly at high temperatures, not much affirmative progress has been realized. Herein, we demonstrate that the Frenkel defect formed via controlled annealing of Sc2 (WO4 )3 :Ln (Ln=Yb, Er, Eu, Tb, Sm), can work as energy reservoir and back-transfer the stored excitation energy to Ln3+ upon heating. Therefore, except routine anti-thermal quenching, thermally enhanced 415-fold downshifting and 405-fold upconversion luminescence are even obtained in Sc2 (WO4 )3 :Yb/Er, which has set a record of both the Yb3+ -Er3+ energy transfer efficiency (>85 %) and the working temperature at 500 and 1073 K, respectively. Moreover, this design strategy is extendable to other hosts possessing Frenkel defect, and modulation of which directly determines whether enhanced or decreased luminescence can be obtained. This discovery has paved new avenues to reliable generation of high-temperature luminescence.

4.
Inorg Chem ; 61(19): 7617-7623, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35504044

RESUMO

Eu2+-activated alkali-lithosilicate phosphors exhibit narrow-band emissions that are attractive to high color-rendition and wide color-gamut displays. The microscopic mechanism behind the small emission bandwidth is not presently understood. Here, we report an explicit calculation of the vibronic process occurring in the narrow-band green emission of Rb2Na2[Li3SiO4]4:Eu2+. We show that due to the high rigidity of the host material, the structural strain induced by the localized Eu2+ 4f-5d excitation is distributed among the atoms far beyond the first coordination shell and hence reduces the local structural relaxation around Eu2+. The emission bandshape is thus mainly controlled by the coupling of the electronic transition with the phonon modes associated with motions of host constituent atoms, which was further validated by the good agreement of the calculated bandshape with the experiment. The results provide insights into the generation of narrow-band emission and improve our knowledge on electron-phonon coupling of 4f-5d transitions in phosphors.

5.
Inorg Chem ; 60(21): 16604-16613, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644068

RESUMO

Revealing the nature of intrinsic defects that act as charge-carrier trapping centers for persistent luminescence (PersL) in inorganic phosphors remains a crucial challenge from an experimental perspective. It was recently reported that Bi3+-doped LiREGeO4 (RE = Sc, Y, Lu) compounds displayed strong ultraviolet-A PersL at ∼360 nm with a duration of tens of hours at room temperature. However, the mechanistic origin of the PersL remains to be unveiled. Herein, we carried out a systematic study on optical transitions, formation energies, and charge-transition levels of dopants and intrinsic point defects in these compounds using hybrid density functional theory calculations. The results show that the efficient charging by 254 nm is due to the D-band transition of Bi3+ and hence the charge carriers pertinent to PersL are electrons originating from the dopants which are involved in the trapping and detrapping processes. The main electron-trapping centers are antisite defects GeLi0, interstitial defects Lii0, and dopants Bi2+, with the former one responsible for the strong PersL and the latter two for its long-time duration. These findings are further confirmed by comparison with calculated results for isostructural NaLuGeO4 and LiLuSiO4, based on which the roles of Li and Ge elements in forming intrinsic defects with appropriate trap depths for PersL are clarified. Our results not only assist in the understanding of experimental observations but also provide a theoretical basis for the rational design of novel PersL phosphors containing lithium and germanium in the host compound.

6.
Inorg Chem ; 59(22): 16760-16768, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33151686

RESUMO

Eu2+-activated ß-Ca3(PO4)2-type phosphors have attracted significant experimental interest for applications in solid-state lighting because of the presence of multiple cation sites, which is highly desirable for site engineering of activator emission. However, the site occupation and associated spectral assignment of dopant Eu2+, and hence the mechanism behind the site-regulated emission tuning, still remain elusive. Herein, we perform a systematic first-principles study on Eu2+-doped Ca3(PO4)2, Ca10M(PO4)7 (M = Li, Na, K), and Ca3(PO4)2:Mg by combining density functional theory and multiconfigurational ab initio calculations. The results show that, among the isovalent EuCa substitutions in Ca3(PO4)2, the occurrence probability correlates positively with the size of the substituted site, which is, nevertheless, weakened by the incorporation of codopant Mg2+ ions. In the presence of aliovalent EuM substitutions as in Ca10M(PO4)7, the site-size-controlled preference is neutralized by the requirement for charge compensation, and the effect becomes more pronounced with an increase of the M+ ionic size. On this basis, the emission spectra of the phosphors are interpreted with respect to the substituted sites and the mechanism behind the composition dependence of the emission color is consistently elucidated, as is also verified by a comparison between the calculated 4f → 5d transition energies and experimental excitation spectra. Our results provide a new perspective on the site preference of Eu2+ in ß-Ca3(PO4)2-type compounds and may also serve as a theoretical guideline on the structure-property relationship for the design of other Eu2+-activated phosphors.

7.
Inorg Chem ; 59(7): 5170-5181, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32196316

RESUMO

The origin of the self-activated luminescence in the apatite-type M5(PO4)3X (MPOX; M = Sr or Ba; X = Cl or Br) samples and the spectral assignment for cerium-doped Sr5(PO4)3Cl (SPOC) phosphors are determined from first-principles methods combined with hybrid density functional theory (DFT) calculations, using the standard PBE0 hybrid functional, with wave function-based embedded-cluster ab initio calculations (at the CASSCF/CASPT2/RASSI-SO level). Electronic structure calculations are performed in order to accurately derive the band gaps of the hosts, the locations of impurity states in the energy bands that are caused by native defects and doped Ce3+ ions, and the charge-compensation mechanisms of aliovalent doping. The calculations of defect formation energies under O-poor conditions demonstrate that the native defects are easily generated in the undoped MPOX samples prepared under reducing atmospheres, from which thermodynamic and optical transition energy levels, as well as the corresponding energies, are derived in order to interpret the luminescence mechanisms of the undoped MPOX as previously reported. Our calculations reveal that the self-activated luminescence is mainly attributed to the optical transitions of the excitons bound to the oxygen vacancies (VO), along with their transformation of the charge states 0 ↔ 1+. Furthermore, the eight excitation bands observed in the synchrotron radiation excitation spectra of SPOC: Ce3+, Na+ phosphors are successfully assigned according to the ab initio calculated energies and relative oscillator strengths of the 4f1 → 5d1-5 transitions for the Ce3+ ions at both the Sr(1) and Sr(2) sites in the host. It is hoped that the feasible first-principles approaches in this work are applied in order to explore the origins of the luminescence in undoped and lanthanide-doped phosphors, complementing the experiments from the perspective of chemical compositions and the microstructures of materials.

8.
Inorg Chem ; 58(13): 8694-8701, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199628

RESUMO

The Sr3SiO5:Eu2+ phosphor has attracted considerable attention for applications in white LEDs owing to its highly efficient yellow emission under violet-blue excitation. We report herein an enhancement of yellow persistent luminescence in Sr3SiO5:Eu2+ through Ge incorporation. The strongest persistent luminescence intensity is observed for Sr3(Si1- xGe x)O5:Eu2+ with x = 0.005 with a peak emission wavelength at ∼580 nm and a persistent time of ∼7000 s at the 0.32 mcd/m2 threshold value after UV radiation. A combination of thermoluminescence measurements and density functional theory (DFT) calculations reveals that the afterglow enhancement is due to a significant increase in the number of oxygen vacancies that act as electron trapping centers with appropriate trap depths. This investigation is anticipated to encourage more exploration of GeSi substitution to design and improve Si-containing persistent phosphors with superior functionalities.

9.
Angew Chem Int Ed Engl ; 58(33): 11521-11526, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31167043

RESUMO

Establishing an effective design principle in solid-state materials for a blue-light-excited Eu2+ -doped red-emitting oxide-based phosphors remains one of the significant challenges for white light-emitting diodes (WLEDs). Selective occupation of Eu2+ in inorganic polyhedra with small coordination numbers results in broad-band red emission as a result of enhanced crystal-field splitting of 5d levels. Rb3 YSi2 O7 :Eu exhibits a broad emission band at λmax =622 nm under 450 nm excitation, and structural analysis and DFT calculations support the concept that Eu2+ ions preferably occupy RbO6 and YO6 polyhedra and show the characteristic red emission band of Eu2+ . The excellent thermal quenching resistance, high color-rendering index Ra (93), and low CCT (4013 K) of the WLEDs clearly demonstrate that site engineering of rare-earth phosphors is an effective strategy to target tailored optical performance.

10.
J Am Chem Soc ; 140(30): 9730-9736, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29985612

RESUMO

Site preferences of dopant Eu2+ on the locations of K+, Ba2+, and Ca2+ in the mixed cation phosphate K2BaCa(PO4)2 (KBCP) are quantitatively analyzed via a combined experimental and theoretical method to develop a blue-emitting phosphor with thermally stable luminescence. Eu2+ ions are located at K2 (M2) and K3 (M3) sites of KBCP, with the latter occupation relatively more stable than the former, corresponding to emissions at 438 and 465 nm, respectively. KBCP:Eu2+ phosphor exhibits highly thermal stable luminescence even up to 200 °C, which is interpreted as due to a balance between thermal ionization and recombination of Eu2+ 5d excited-state centers with the involvement of electrons trapped at crystal defect levels. Our results can initiate more exploration of activator site engineering in phosphors and therefore allow predictive control of photoluminescence tuning and thermally stable luminescence for emerging applications in white LEDs.

11.
Inorg Chem ; 57(3): 1116-1124, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303560

RESUMO

Investigation of optical properties of Ce3+-activated phosphors is not only of practical importance for various applications but also of fundamental importance for providing a basis to understand relevant properties of other lanthanide ions in the same host. We report herein a combined experimental and theoretical study of optical properties of Ce3+ in Li4SrCa(SiO4)2. Photoluminescence properties of the material prepared by a solid-state reaction method are investigated with excitation energies in the vacuum-ultraviolet (VUV) to ultraviolet (UV) range at low temperatures. The band maxima in the excitation spectra are assigned with respect to 4f → 5d transitions of Ce3+ at the Sr and Ca sites, from comparison between experimental and ab initio predicted transition energies. As a result of the two-site occupation, the material displays luminescence at 300-500 nm with a high thermal quenching temperature (>500 K), consistent with the calculated large gaps (∼1.40 eV) between the emitting 5d levels and the bottom of the host conduction band. On the basis of experimental and calculated results for Ce3+ in Li4SrCa(SiO4)2, the energy-level diagram for the 4f ground states and the lowest 5d states of all trivalent and divalent lanthanide ions at the Sr and Ca sites of the same host is constructed and discussed in association with experimental findings.

12.
Inorg Chem ; 57(10): 6142-6151, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29741880

RESUMO

Geometric structures, electronic properties, thermodynamic stabilities, and optical transitions of intrinsic defects (vacancies and antisite defects) and lanthanide ions (Ce3+, Eu2+, and Eu3+) in Li2SrSiO4 (LSSO) host are studied by theoretical calculations combined with hybrid density functional theory, the multireference configuration interaction method, and empirical models. Calculations on the defect formation energies and the ab initio simulations of 4f → 5d electronic transitions for Ce3+ ions determine the most possible charge-compensation mechanism and accurately identify excitation bands in experimental spectra for LSSO:Ce3+ phosphors. On the basis of previously reported experimental spectra of Ce3+- and Eu3+-doped LSSO phosphors as well as a series of empirical models developed by Dorenbos, the locations of the 4f ground states and the lowest 5d excited states of Ln3+ and Ln2+ ions in the host (illustrated by the host-referred binding energy scheme, i.e., the HRBE scheme) are obtained, which is useful for the investigation of the electron-transfer and spectroscopic properties in lanthanide-doped LSSO. Moreover, thermodynamic and optical transition energy levels related to intrinsic defects and lanthanide ions (with various charge states) are derived from total energy calculations. The mechanisms of thermoluminescence (TL) and long-lasting luminescence (LLL) in LSSO:Eu2+,Dy3+ phosphors and especially the contributions of oxygen vacancies ( VO) and Dy3+ dopants are then interpreted. The aim of this study is thus to deeply understand the mechanisms of charge compensation, TL, and LLL in lanthanide-doped phosphors from theoretical calculations and analyses.

13.
Inorg Chem ; 57(12): 7090-7096, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29863341

RESUMO

Knowledge of site occupation of activators in phosphors is of essential importance for understanding and tailoring their luminescence properties by modifying the host composition. Relative site preference of Eu2+ for the two distinct types of alkaline earth (AE) sites in Ba1.9995- xSr xEu0.0005SiO4 ( x = 0-1.9) is investigated based on photoluminescence measurements at low temperature. We found that Eu2+ prefers to be at the 9-coordinated AE2 site at x = 0, 0.5, and 1.0, while at x = 1.5 and 1.9, it also occupies the 10-coordinated AE1 site with comparable preference, which is verified by density functional theory (DFT) calculations. Moreover, by combining low-temperature measurements of the heat capacity, the host band gap, and the Eu2+ 4f7 ground level position, the improved thermal stability of Eu2+ luminescence in the intermediate composition ( x = 1.0) is interpreted as due to an enlarged energy gap between the emitting 5d level and the bottom of the host conduction band (CB), which results in a decreased nonradiative probability of thermal ionization of the 5d electron into the host CB. Radioluminescence properties of the samples under X-ray excitation are finally evaluated, suggesting a great potential scintillator application of the compound in the intermediate composition.

14.
Angew Chem Int Ed Engl ; 56(35): 10357-10361, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28649746

RESUMO

Samples of the Ca3 Sc2 Si3 O12 (CSS) host singly doped with Eu2+ or Yb3+ , doubly doped with Eu2+ and Yb3+ , and triply doped with Ce3+ , Eu2+ and Yb3+ were synthesized by a sol-gel combustion process under reducing conditions. Unlike previous reports of Eu2+ →Yb3+ energy transfer in other systems, the energy transfer is resonant in the CSS host and the transfer efficiency reaches 100 % for lightly doped samples. The transfer mechanism is multipolar rather than electron transfer for the sample compositions employed herein. The emission intensity of Yb3+ is further enhanced by co-doping with Ce3+ in addition to Eu2+ . The quantum efficiencies of the doped materials range between 9 % and 93 %.

15.
J Phys Chem A ; 120(28): 5539-48, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27331405

RESUMO

The downshifting from Ce(3+) blue emission to Yb(3+) near-infrared emission has been studied in the garnet host Ca2.8-2xCe0.1YbxNa0.1+xSc2Si3O12 (x = 0-0.36). The downshifting does not involve quantum cutting, but one incident blue photon is transferred from Ce(3+) to Yb(3+) with an energy transfer efficiency up to 90% when x = 0.36 for the Yb(3+) dopant ion. For x ≤ 0.15, a multiphonon-assisted electric dipole-electric quadrupole mechanism of energy transfer dominates, while for the highest concentration of Yb(3+) employed, the electron transfer mechanism is confirmed. A temperature-dependent increase of the Ce(3+) → Yb(3+) energy transfer rate does not exclusively indicate the electron transfer mechanism. The application of the material to solar energy conversion is indicated.

16.
Inorg Chem ; 54(12): 5725-31, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25996643

RESUMO

A series of N-protected 3-imino-functionalized indolyl ligands 1-R-3-(R'N═CH)C8H5N [R = Bn, R' = 2,6-(i)Pr2C6H3 (HL(1)); R = CH3, R' = 2,6-(i)Pr2C6H3 (HL(2)); R = Bn, R' = (t)Bu (HL(3))] and 1-CH3-2-(2,6-(i)Pr2C6H3N═CH)C8H5N (HL(4)) was prepared via reactions of N-protected indolyl aldehydes with corresponding amines. The C-H σ-bond metathesis followed by alkane elimination reactions between RE(CH2SiMe3)3(thf)2 and HL(1)-HL(3) afforded the carbon σ-bonded indolyl-ligated rare-earth metal monoalkyl complexes. Reactions of RE(CH2SiMe3)3(thf)2 with 2 equiv of HL(1) or HL(2) gave the carbon σ-bonded indolyl-ligated rare-earth metal monoalkyl complexes L(1)2RECH2SiMe3 (RE = Y(1), Er(2), Dy(3)) and L(2)2RECH2SiMe3 (RE = Y(5), Er(6), Dy(7), Yb(8)), while reaction of Yb(CH2SiMe3)3(thf)2 with 2 equiv of HL(1) afforded the ytterbium dialkyl complex L(1)Yb(CH2SiMe3)2(thf)2 (4). Reactions of RE(CH2SiMe3)3(thf)2 with HL(3) gave the tris(heteroaryl) rare-earth metal complexes L(3)3RE (RE = Y(9), Er(10)). In the presence of cocatalysts, the rare-earth metal monoalkyl complexes initiated isoprene polymerization with a high activity (90% conversion of 1000 equiv of isoprene in 25 min) producing polymers with high regio- and stereoselectivity (1,4-cis polymers up to 99%).

17.
Nanotechnology ; 26(15): 155601, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25800060

RESUMO

Integrating nanostructures onto optical fibers presents a promising strategy for developing new-fashioned devices and extending the scope of nanodevices' applications. Here we report the first fabrication of a composite silicon nanostructure on an optical fiber. Through direct chemical etching using an H2O2/HF solution, multicrystal silicon films with columnar microstructures are etched into a vertically aligned, inverted-cone-like nanorod array embedded in a nanocone array. A faster dissolution rate of the silicon at the void-rich boundary regions between the columns is found to be responsible for the separation of the columns, and thus the formation of the nanostructure array. The morphology of the nanorods primarily depends on the microstructure of the columns in the film. Through controlling the microstructure of the as-grown film and the etching parameters, the structural control of the nanostructure is promising. This fabrication method can be extended to a larger length scale, and it even allows roll-to-roll processing.

18.
J Phys Chem A ; 119(29): 8031-9, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26106945

RESUMO

In the present work, geometric structures, electronic properties, and 4f → 5d transitions of γ-Ca2SiO4:Ce(3+) phosphors have been investigated by using first-principles calculations. Four categories of typical substitutions (i.e., the doping of the Ce(3+) without the neighboring dopants/defects and with the neighboring VO(••), AlSi', and VCa″) are taken into account to simulate local environments of the Ce(3+) located at two crystallographically different calcium sites in the γ-Ca2SiO4. Density functional theory (DFT) geometry optimization calculations are first performed on the constructed supercells to obtain the information about the local structures and preferred sites for the Ce(3+). On the basis of the optimized crystal structures, the electronic properties of γ-Ca2SiO4:Ce(3+) phosphors are calculated with the Heyd-Scuseria-Ernzerhof screened hybrid functional, and the energies and relative oscillator strengths of the 4f → 5d transitions of the Ce(3+) are derived from the ab initio embedded cluster calculations at the CASSCF/CASPT2/RASSI-SO level. A satisfactory agreement with the available experimental results is thus achieved. Moreover, the relationships between the dopants/defects and the electronic as well as spectroscopic properties of γ-Ca2SiO4:Ce(3+) phosphors have been explored. Such information is vital, not least for the design of Ce(3+)-based phosphors for the white light-emitting diodes (w-LEDs) with excellent performance.

19.
J Phys Chem A ; 118(38): 8745-52, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25171085

RESUMO

Some features of the interaction of the 4f(N) configuration of tripositive lanthanide ions (Ln(3+)) with excited configurations have been investigated. The calculated barycenter energies of the same parity 4f(N-1)6p, 4f(N+1)5p(5), and 4f(N-1)5f configurations for Ln(3+), relative to those of 4f(N), are fitted well by exponential functions. The 4f(N) barycenter energies of Ln(3+) in Y3Al5O12/Ln(3+) lie in the band gap, with the exceptions of Tb(3+) and Yb(3+), where they are situated in the conduction and valence bands, respectively. The configuration interaction parameters α, ß, and γ, which are fitted in the usual phenomenological Hamiltonian to calculate the crystal field energies of Ln(3+), exhibit quite variable magnitudes in the literature due to incomplete energy level data sets, energy level misassignments and fitting errors. For LaCl3/Ln(3+), 83% of the variation of α and 50% of that for ß can be explained by the change in the difference in barycenter energy with the predominant interacting configuration. The parameter γ is strongly correlated with the Slater parameter F(2) and is not well-determined in most calculations. The values of the electrostatically correlated spin-other orbit parameter P(2) vary smoothly across the Ln(3+) series with the barycenter difference between the 4f(N) and 4f(N-1)5f configurations. Calculations of the P(k) (k = 2, 4, and 6) values for Pr(3+) show that 4f → nf excitations only account for ∼65% of the value of P(2) for LaCl3/Pr(3+) and 35% of that in Y3Al5O12/Pr(3+). The role of the ligand is therefore important in determining the value, and a discussion is included of the present state of configuration-interaction-assisted crystal field calculations. Further progress cannot be made in the above areas until more reliable and complete energy level data sets are available for the Ln(3+) series of ions in crystals.

20.
J Phys Chem A ; 118(27): 4988-94, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24953347

RESUMO

The Ce(3+) ions occupying the two crystallographically distinct Y(3+) sites both with C1 point group symmetry in the X2-Y2SiO5 (X2-YSO) crystal are discriminated by their spectroscopic properties calculated with ab initio approaches and phenomenological model analyses. Density functional theory (DFT) calculations with the supercell approach are performed to obtain the local structures of Ce(3+), based on which the wave function-based embedded cluster calculations at the CASSCF/CASPT2 level are carried out to derive the 4f → 5d transition energies. From the ab initio calculated energy levels and wave functions, the crystal-field parameters (CFPs) and the anisotropic g-factor tensors of Ce(3+) are extracted. The theoretical results agree well with available experimental data. The structural and spectroscopic properties for the two types of Ce(3+) ions in X2-YSO are thus distinguished in terms of the calculated local atomic structures, 4f → 5d transition energies, and spectral parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA